首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have prepared a series of (PLZT)x(BiFeO3)1−x transparent thin films with thickness of 300 nm by a thermal pyrolysis method. Only films with x≦0.10 formed a single phase of perovskite structure. The film where x=0.10 exhibited both ferromagnetic and ferroelectric properties at room temperature with spontaneous magnetization and coercive magnetic fields of 0.0027μB and 5500 G, respectively. The remanent electric polarization and coercive electric field for the film where x=0.10 were 3.0 μC/cm2 and 24 kV/cm, respectively. Additionally, films with 0.02≦x≦0.10 showed both magneto-optical effects and the second harmonic generation of transmitted light.  相似文献   

2.
The effects of HfOxNy on the electrical property of HfOxNy-HfO2-HfOxNy sandwich-stack (signed as SS) films were investigated. Excellent electrical performances were achieved in SS films, with a high dielectric constant of 16 and a low leakage current of ∼2 × 10−8 A/cm2 at 1 MV/cm. Schottky (SK) emission and Frenkel-Poole (PF) emission are found to be the dominant mechanisms for the current conduction behavior. After a long time stress, the flat-band voltage shift in the SS film is much smaller than that in a pure HfOxNy film indicating fewer charge traps existed in the SS film. Based on the experiments, the new SS structure is more favorable for the improvement of electrical performances than a pure HfOxNy or HfO2 structure.  相似文献   

3.
Silicon oxynitride thin films were deposited by reactive r.f. sputtering from a silicon target. Different Ar:O2:N2 gas atmospheres were used at fixed power density (3.18 W cm−2) and pressure (0.4 Pa) to obtain various film composition. Pt-SiOxNy-Pt sandwich type structure was realised for electrical property investigations. The C-V measurements showed the absence of a Schottky barrier and thus confirmed that Pt electrode provides an ohmic contact. The evolution of the current density showed a decrease of the film conductivity when the oxygen concentration in the films increases. The various layer composition leads to two different conduction mechanisms which were identified as space charge limited current (SCLC) and Poole-Frenkel effect. Finally, the structural defects of the films were studied by EPR analysis and the spin densities were correlated to both the composition and the electrical behaviour of the films.  相似文献   

4.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

5.
Polycrystalline thin films of p-CuIn(S1−xSex)2 have been deposited by a solution growth technique. The deposition parameters such as pH, temperature and time have been optimized. In order to achieve uniformity of thin film, triethanolamine (TEA) has been used. As deposited films have been annealed at 450 °C in air for 5 min. The surface morphology, compositional ratio, structural properties have been studied by SEM, EDAX and XRD technique, respectively. It has been found that films have chalcopyrite structure with the lattice parameters a=5.28 Å and c=11.45 Å at composition x=0.5. The grain size of all composition x measured from SEM and XRD is varied in between 450 and 520 nm. The optical transmittance spectra have been recorded in the range 350-1000 nm. The absorption coefficient has been calculated at the absorption edge for each of the composition x and it is in the range of 104 cm−1. The material shows the direct allowed band gap, which varies from 1.07 to 1.44 eV with change in composition (0≤x≤1.0). These parameters are useful for the photovoltaic application.  相似文献   

6.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi.  相似文献   

7.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

8.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

9.
Two kinds of spinel LiMn2O4 thin film for lithium ion micro-batteries were successfully prepared on polycrystal Pt substrates by spin coating methods, which were carried out under ultrasonic irradiation (USG) and magnetic stirring (MSG), respectively. The microstructures and electrochemical performance of LiMn2O4 thin films were characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge-discharge measurements. It was found that the crystalline structure of USG samples grew better than that of the MSG samples. At the same time, higher discharge capacity and better cycle stability were obtained for the LiMn2O4 thin films of USG at the current density of 50 μAh/cm2 between 3.0 and 4.3 V. The 1st discharge capacity was 57.8 μAh/cm2-μm for USG thin films and 51.7 μAh/cm2-μm for MSG thin films. After 50 cycles, 91.4% and 69% of discharge capacity could be retained respectively, indicating that ultrasonic irradiation condition during spin coating was more suitable for preparing spinel LiMn2O4 thin films with better electrode performance for lithium ion micro-batteries.  相似文献   

10.
Y.D. Su 《Applied Surface Science》2009,255(18):8164-8170
We deposit ternary WCxNy thin films on Si (1 0 0) substrates at 500 °C using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and explore the effects of substrate bias (Vb) on the intrinsic stress, preferred orientation and phase transition for the obtained films by virtue of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and selective area electron diffraction (SAED). We find that with increasing the absolute value of Vb up to 200 V the carbon (x) and nitrogen (y) atom concentrations of WCxNy films keep almost constant with the values of 0.75 and 0.25, respectively. The XPS and SAED results, combined with the density-functional theory (DFT) calculations on the electronic structure of WC0.75N0.25, show our obtained WCxNy films are single-phase of carbonitrides. Furthermore, we find that the compressive stress sharply increases with increasing the absolute value of Vb, which leads to a pronounced change in the preferred orientation and phase structure for the film, in which a phase transition from cubic β-WCxNy to hexagonal α-WCxNy occurs as Vb is in the range of −40 to −120 V. In order to reveal the relationship between the stress and phase transition as well as preferred orientation, the DFT calculations are used to obtain the elastic constants for β-WCxNy and α-WCxNy. The calculated results show that the preferred orientation is dependent on the competition between strain energy and surface energy, and the phase transition can be attributed to a decrease in the strain energy.  相似文献   

11.
Hafnium oxynitride (HfOxNy) gate dielectric has been deposited on Si (1 0 0) by means of radio frequency (rf) reactive sputtering using directly a HfO2 target in N2/Ar ambient. The thermal stability and microstructural characteristics for the HfOxNy films have been investigated. XPS results confirmed that nitrogen was successfully incorporated into the HfO2 films. XRD analyses showed that the HfOxNy films remain amorphous after 800 °C annealing in N2 ambient. Meanwhile the HfOxNy films can also effectively suppress oxygen diffusion during high temperature annealing and prevent interface layer from forming between HfOxNy films and Si substrates. AFM measurements demonstrated that surface roughness of the HfOxNy films increase slightly as compared to those pure HfO2 films after post deposition annealing. By virtue of building reasonable model structure, the optical properties of the HfOxNy films have been discussed in detail.  相似文献   

12.
The multiferroic (PMN-PT/CFO)n (n = 1,2) multilayered thin films have been prepared on SiO2/Si(1 0 0) substrate with LNO as buffer layer via a rf magnetron sputtering method. The structure and surface morphology of multilayered thin films were determined by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. The smooth, dense and crack-free surface shows the excellent crystal quality with root-mean-square (RMS) roughness only 2.9 nm, and average grain size of CFO thin films on the surface is about 44 nm. The influence of the thin films thickness size, periodicity n and crystallite orientation on their properties including ferroelectric, ferromagnetic properties in the (PMN-PT/CFO)n multilayered thin films were investigated. For multilayered thin films with n = 1 and n = 2, the remanent polarization Pr are 17.9 μC/cm2 and 9.9 μC/cm2; the coercivity Hc are 1044 Oe and 660 Oe, respectively. In addition, the relative mechanism are also discussed.  相似文献   

13.
Physical properties of a nanocrystalline thin film is greatly influenced by its morphological and structural evolution. We try to understand the transition of SnO2 thin films from amorphous to nanocrystalline structure with XRD, IR, SEM, AFM and surface profiler studies. A 2D layer like structure resulting from quantum confinement is found for the films prepared at 400 °C. We observed a new IR band at 530 cm−1 that was theoretically predicted and report it for the first time. A correlation of population of defects in SnO2 films with change in lattice parameters and FWHM of IR bands are reported. The electric and optical properties of the films have been discussed.  相似文献   

14.
Two nanocomposite Ti-Cx-Ny thin films, TiC0.95N0.60 and TiC2.35N0.68, as well as one pure TiN, were deposited at 500 °C on Si(1 0 0) substrate by reactive unbalanced dc-magnetron sputtering. Oxidation experiments of these films were carried out in air at fixed temperatures in a regime of 250-600 °C with an interval of 50 °C. As-deposited and oxidized films were characterized and analyzed using X-ray diffraction (XRD), microindentation, Newton's ring methods and atomic force microscopy (AFM). It was found that the starting oxidation temperature of nanocomposite Ti-Cx-Ny thin films was 300 °C irrespective of the carbon content; however their oxidation rate strongly depended on their carbon content. Higher carbon content caused more serious oxidation. After oxidation, the film hardness value remained up to the starting oxidation temperature, followed by fast decrease with increasing heating temperature. The residual compressive stress did not show a similar trend with the hardness. Its value was first increased with increase of heating temperature, and got its maximum at the starting oxidation temperature. A decrease in residual stress was followed when heating temperature was further increased. The film surface roughness value was slightly increased with heating temperature till the starting oxidation temperature, a great decrease in surface roughness was followed with further increase of heating temperature.  相似文献   

15.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

16.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

17.
Hf1−xSixOy is an attractive candidate material for high-k dielectrics. We report in this work the deposition of ultra-thin Hf1−xSixOy films (0.1 ≤ x ≥ 0.6) on silicon substrate at 450 °C by UV-photo-induced chemical vapour deposition (UV-CVD) using 222 nm excimer lamps. Silicon(IV) and hafnium(IV) organic compounds were used as the precursors. Films from around 5 to 40 nm in thickness with refractive indices from 1.782 to 1.870 were grown. The deposition rate was found to be of 6 nm/min at a temperature of 450 °C. The physical, interfacial and electrical properties of hafnium silicate (Hf1−xSixOy) thin films were investigated by using X-ray photoelectron spectroscopy, ellipsometry, FT-IR, C-V and I-V measurements. XRD showed that they were basically amorphous, while Fourier transform infrared spectroscopy (FT-IR), clearly revealed Hf-O-Si absorption in the photo-CVD deposited Hf1−xSixOy films. Surface and interfacial properties were analysed by TEM and XPS. It is found that carbon content in the films deposited by UV-CVD is very low and it also decreases with increasing Si/(Si + Hf) ratio, as low as about 1 at.% at the Si/(Si + Hf) ratio of 60 at.%.  相似文献   

18.
CrNx thin films have attracted much attention for semiconductor IC packaging molding dies and forming tools due to their excellent hardness, thermal stability and non-sticking properties (low surface free energy). However, few data has been published on the surface free energy (SFE) of CrNx films at temperatures in the range 20-170 °C. In this study CrNx thin films with CrN, Cr(N), Cr2N (and mixture of these phases) were prepared using closed field unbalanced magnetron sputtering at a wide range of Cr+2 emission intensity. The contact angles of water, di-iodomethane and ethylene glycol on the coated surfaces were measured at temperatures in the range 20-170 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the CrNx films and their components (e.g., dispersion, polar) were calculated using the Owens-Wendt geometric mean approach. The influences of CrNx film surface roughness and microstructure on the surface free energy were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The experimental results showed that the lowest total SFE was obtained corresponding to CrN at temperature in 20 °C. This is lower than that of Cr(N), Cr2N (and mixture of these phases). The total SFE, dispersive SFE and polar SFE of CrNx films decreased with increasing surface temperature. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness.  相似文献   

19.
T. Wang 《Applied Surface Science》2008,254(21):6817-6819
Copper nitride (Cu3N) thin film was deposited on silicon (Si) substrate by reactive magnetron sputtering method. X-ray diffraction measurement showed that the film was composed of Cu3N crystallites with anti-ReO3 structure and exhibited preferential orientation of [1 0 0] direction. The field emission (FE) result showed that Cu3N film had a turn-on electric field of about 3 V/μm at a current density of 1 μA/cm2 and a current density of 700 μA/cm2 was obtained at the electric field of 24 V/μm. The emission mechanism inferred by Fowler-Nordheim (FN) plot is shown as following: thermal electron emission at low field region and tunneling electron emission at high field region.  相似文献   

20.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号