首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Carbon-fluorine bonds are stable and have demonstrated sluggishness against various chemical manipulations. However, selective transformations of C−F bonds can be achieved by developing appropriate conditions as useful synthetic methods in organic chemistry. This review focuses on C−C bond formation at monofluorinated sp3-hybridized carbons via C−F bond cleavage, including cross-coupling and multi-component coupling reactions. The C−F bond cleavage mechanisms on the sp3-hybridized carbon centers can be primarily categorized into three types: Lewis acids promoted F atom elimination to generate carbocation intermediates; nucleophilic substitution with metal or carbon nucleophiles supported by the activation of C−F bonds by coordination of Lewis acids; and the cleavage of C−F bonds via a single electron transfer. The characteristic features of alkyl fluorides, in comparison with other (pseudo)halides as promising electrophilic coupling counterparts, are also discussed.  相似文献   

2.
A novel approach for the umpolung α‐arylation of amides is presented. By the nucleophilic phenylation of O‐silyl N,O‐ketene acetals, generated in situ from N‐alkoxy amides, a phenyl group can be introduced onto the α‐carbon atom of amides through N−O bond cleavage in a two‐step, one‐pot process. The asymmetric synthesis of α‐aryl amides through the diastereoselective arylation of a chiral N,O‐ketene acetal is also described.  相似文献   

3.
The role solvent plays in reactions involving frustrated Lewis pairs (FLPs)—for example, the stoichiometric mixture of a bulky Lewis acid and a bulky Lewis base—still remains largely unexplored at the molecular level. For a reaction of the phosphorus/boron FLP and dissolved CO2 gas, first principles (Born–Oppenheimer) molecular dynamics with explicit solvent reveals a hitherto unknown two‐step reaction pathway—one that complements the concerted (one‐step) mechanism known from the minimum‐energy‐path calculations. The rationalization of the discovered reaction pathway—that is, the stepwise formation of P?C and O?B bonds—is that the environment (typical organic solvents) stabilizes an intermediate which results from nucleophilic attack of the phosphorus Lewis base on CO2. This finding is significant because presently the concerted reaction‐path paradigm predominates in the rationalization of FLP reactivity. Herein we point out how to attain experimental proof of our results.  相似文献   

4.
A multilevel approach that combines high‐level ab initio quantum chemical methods applied to a molecular model of a single, strain‐free Si O Si bridge has been used to derive accurate energetics for Si O bond cleavage. The calculated Si O bond dissociation energy and the activation energy for water‐assisted Si O bond cleavage of 624 and 163 kJ mol−1, respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H2O‐assisted Si O bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero‐point vibrational contribution is in the range of −5 to 19 kJ mol−1. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
We have developed a highly efficient aryl migration from an aryl ether to a carboxylic acid group through retro‐Smiles rearrangement by visible‐light photoredox catalysis at ambient temperature. Transition metals and a stoichiometric oxidant and base are avoided in the transformation. Inspired by the high efficiency of this transformation and the fundamental importance of C−O bond cleavage, we developed a novel approach to the C−O cleavage of a biaryl ether to form two phenolic compounds, as demonstrated by a one‐pot, two‐step gram‐scale reaction under mild conditions. The aryl migration exhibits broad scope and can be applied to the synthesis of pharmaceutical compounds, such as guacetisal. Primary mechanistic studies indicate that the catalytic cycle occurs by a reductive quenching pathway.  相似文献   

6.
The reduction of C?O groups with silanes catalyzed by electron‐deficient boranes follows a counterintuitive mechanism in which the Si? H bond is activated by the boron Lewis acid prior to nucleophilic attack of the carbonyl oxygen atom at the silicon atom. The borohydride thus formed is the actual reductant. These steps were elucidated by using a silicon‐stereogenic silane, but applying the same technique to the related reduction of C?N groups was inconclusive due to racemization of the silicon atom. The present investigation now proves by the deliberate combination of our axially chiral borane catalyst and axially chiral silane reagents (in both enantiomeric forms) that the mechanisms of these hydrosilylations are essentially identical. Unmistakable stereochemical outcomes for the borane/silane pairs show that both participate in the enantioselectivity‐determining hydride‐transfer step. These experiments became possible after the discovery that our axially chiral C6F5‐substituted borane induces appreciable levels of enantioinduction in the imine hydrosilylation.  相似文献   

7.
This review article describes the chemistry of transition‐metal complexes containing heavier group 14 elements (Si, Ge, and Sn) as the σ‐electron‐acceptor (Z‐type) ligands and discusses the characteristics of bonds between the transition metal and Z‐type ligand. Moreover, we review the iridium hydride mediated cleavage of E–X bonds (E=Si, Ge; X=F, Cl), where the key intermediates are pentacoordinate silicon or germanium compounds bearing a dative M→E bond.  相似文献   

8.
Most Eley–Rideal abstraction reactions involve an energetic gas‐phase atom reacting directly with a surface adsorbate to form a molecular product. Molecular projectiles are generally less reactive, may dissociate upon collision with the surface, and thus more difficult to prove that they can participate intact in abstraction reactions. Here we provide experimental evidence for direct reactions occurring between molecular N2+ and O2+ projectiles and surface‐adsorbed D atoms in two steps: first, the two atoms of the diatomic molecule undergo consecutive collisions with a metal surface atom without bond rupture; and second, the rebounding molecule abstracts a surface D atom to form N2D and O2D intermediates, respectively, detected as ions. The kinematics of the collisional interaction confirms product formation by an Eley–Rideal reaction mechanism and accounts for inelastic energy losses commensurate with surface re‐ionization. Such energetic hydrogenation of dinitrogen may provide facile activation of its triple bond as a first step towards bond cleavage.  相似文献   

9.
硅杂四元环化合物的合成和反应   总被引:1,自引:0,他引:1  
硅杂四元环化合物在有机硅化学中是一类非常重要的小分子环系化合物, 广泛应用于有机化学、金属有机化学以及材料化学. 环上只含有一个硅原子的硅杂环丁烷可以通过γ-卤代丙基硅烷的Grignard反应、Si=C键与烯烃的 [2+2]环加成反应以及硅杂环丙烷的扩环反应合成, 环上只含有一个硅原子的硅杂环丁烯可以通过格氏试剂或锂试剂参与的Si—C键的关环反应、硅杂环丁烷的转化反应、硅卡宾对C—H键的插入反应、Si=C键与炔烃的[2+2]环加成反应以及二炔基硅烷的分子内成环反应等途径合成. 硅杂环丁烷和硅杂环丁烯由于存在环张力和具有一定的Lewis酸性, 能够通过扩环反应生成五元和六元含硅杂环化合物, 也能够通过开环反应生成不同结构的有机硅分子和聚合物, 抑或实现有机反应在温和条件下的转化.  相似文献   

10.
Car–Parrinello molecular dynamics (CP–MD) simulations are performed at high temperature and pressure to investigate chemical interactions and transport processes at the α‐quartz–water interface. The model system initially consists of a periodically repeated quartz slab with O‐terminated and Si‐terminated (1000) surfaces sandwiching a film of liquid water. At a temperature of 1000 K and a pressure of 0.3 GPa, dissociation of H2O molecules into H+ and OH? is observed at the Si‐terminated surface. The OH? fragments immediately bind chemically to the Si‐terminated surface while Grotthus‐type proton diffusion through the water film leads to protonation of the O‐terminated surface. Eventually, both surfaces are fully hydroxylated and no further chemical reactions are observed. Due to the confinement between the two hydroxylated quartz surfaces, water diffusion is reduced by about one third in comparison to bulk water. Diffusion properties of dissolved SiO2 present as Si(OH)4 in the water film are also studied. We do not observe strong interactions between the hydroxylated quartz surfaces and the Si(OH)4 molecule as would have been indicated by a substantial lowering of the Si(OH)4 diffusion coefficient along the surface. No spontaneous dissolution of quartz is observed. To study the mechanism of dissolution, constrained CP–MD simulations are done. The associated free energy profile is calculated by thermodynamic integration along the reaction coordinate. Dissolution is a stepwise process in which two Si? O bonds are successively broken. Each bond breaking between a silicon atom at the surface and an oxygen atom belonging to the quartz lattice is accompanied by the formation of a new Si? O bond between the silicon atom and a water molecule. The latter loses a proton in the process which eventually leads to protonation of the oxygen atom in the cleaved quartz Si? O bond. The final solute species is Si(OH)4.  相似文献   

11.
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α‐hydroxy C−H bonds. This approach employs zinc‐mediated alcohol deprotonation to activate α‐hydroxy C−H bonds while simultaneously suppressing C−O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn‐based Lewis acids also deactivates other hydridic bonds such as α‐amino and α‐oxy C−H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3‐step synthesis of the drug Prozac exemplifies the utility of this new method.  相似文献   

12.
The title compound, C8H5NO, has an intra­molecular O⋯CN contact involving an O⋯C distance of 2.797 (2) Å and a C—C—N bond angle of 174.5 (2)°, both indicative of a weak nucleophilic attack of the aldehyde O atom on the electrophilic C atom in the nitrile group. Calculations at the B3LYP density functional level using the 6–31G* basis set support this inter­pretation; natural bond‐order analysis indicates an nO1→π delocalization energy of 6.3 kJ mol−1. Similar results were obtained from density functional calculations on three related mol­ecules. The 2‐formyl­benzonitrile mol­ecules pack in sheets as a consequence of C—H⋯N and C—H⋯O hydrogen bonds.  相似文献   

13.
A simple, one-pot procedure is reported for the selective defluoroalkylation of trifluoromethyl alkene derivatives with aldehydes and ketones. The reaction sequence allows construction of a new C−C bond in a highly selective manner from a single sp3 C−F bond of a CF3 group in the presence of sp2 C−F bonds. The scope incorporates industrially relevant fluorocarbons including HFO-1234yf and HFO-1234ze. No catalyst, additives or transition metals are required, rather the methodology relies on a recently developed boron reagent. Remarkably, the boron site of this reagent plays a dual role in the reaction sequence, being nucleophilic at boron in the C−F cleavage step (SN2’) but electrophilic at boron en route to the carbon–carbon bond-forming step (SE2’). The duplicitous behaviour is underpinned by a hydrogen atom migration from boron to the carbon atom of a carbene ligand.  相似文献   

14.
The direct and controlled activation of a C(sp3)?H bond adjacent to an O atom is of particular synthetic value for the conventional derivatization of ethers or alcohols. In general, stoichiometric amounts of an oxidant are required to remove an electron and a hydrogen atom of the ether for subsequent transformations. Herein, we demonstrate that the activation of a C?H bond next to an O atom could be achieved under oxidant‐free conditions through photoredox‐neutral catalysis. By using a commercial dyad photosensitizer (Acr+‐Mes ClO4?, 9‐mesityl‐10‐methylacridinium perchlorate) and an easily available cobaloxime complex (Co(dmgBF2)2?2 MeCN, dmg=dimethylglyoxime), the nucleophilic addition of β‐keto esters to oxonium species, which is rarely observed in photocatalysis, leads to the corresponding coupling products and H2 in moderate to good yields under visible‐light irradiation. Mechanistic studies suggest that both isochroman and the cobaloxime complex quench the electron‐transfer state of this dyad photosensitizer and that benzylic C?H bond cleavage is probably the rate‐determining step of this cross‐coupling hydrogen‐evolution transformation.  相似文献   

15.
Al/P- and Ga/P-based frustrated Lewis pairs (FLPs) reacted with an azirine under mild conditions under cleavage of the heterocycle on two different positions. Opening of the C−C bond yielded an unusual nitrile–ylide adduct in which a C−N moiety coordinated to the FLP backbone. Cleavage of a C−N bond afforded the thermodynamically favored enamine adduct with the N atom bound to P and Al or Ga atoms. Ring closure was observed upon treatment of an Al/P FLP with electronically unsaturated substrates (4-(1-cyclohexenyl)-1-aza-but-1-en-3-ynes) and yielded by C−N bond formation hexahydroquinoline derivatives, which coordinated to the FLP through P−C and Al−C bonds. Diphenylcyclopropenone showed a diverse reactivity, which depending on steric shielding and the polarizing effect of Al or Ga atoms afforded different products. An AltBu2/P FLP yielded an adduct with the C=O group coordinated to P and Al. The dineopentyl derivative gave an equilibrium mixture consisting of a similar product and a simple adduct with O bound to Al and a three-coordinate P atom. Both compounds co-crystallize. The Ga/P FLP only formed the simple adduct with the same substrate. Rearrangement resulted in all cases in C3-ring cleavage and migration of a mesityl group from P to a former ring C atom by C−C bond formation. Diphenylthiocyclopropenone (evidence for the presence of P=C bonds) and an imine derivative afforded similar products.  相似文献   

16.
Despite tremendous efforts to synthesize isolable compounds with an Si=O bond, silicon analogues of ketones that contain an unperturbed Si=O bond have remained elusive for more than 100 years. Herein, we report the synthesis of an isolable silicon analogue of a ketone that exhibits a three‐coordinate silicon center and an unperturbed Si=O bond, thus representing the first example of a genuine silanone. Most importantly, this silanone does not require coordination by Lewis bases and acids and/or the introduction of electron‐donating groups to stabilize the Si=O bond. The structure and properties of this unperturbed Si=O bond were examined by a single‐crystal X‐ray diffraction analysis, NMR spectroscopy, and theoretical calculations. Bimolecular reactions revealed high electrophilicity on the Si atom and high nucleophilicity on the O atom of this genuine Si=O bond.  相似文献   

17.
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase‐2 (MMP‐2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all‐atom three‐dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace‐Gln‐Gly~Ile‐Ala‐Gly‐Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four‐step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C? N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate‐limiting step in MMP‐2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Owing to its versatility in synthetic chemistry, TPB (tris[2‐diisopropylphospino)phenyl]borane) is a very important frustrated Lewis Pair. The unusual stability of the neutral radical (TPB)Cu has been related to the presence of a one‐electron B−Cu bond. Herein we show, through the use of different computational chemistry methods, that the existence and nature of this kind of A⋅⋅⋅M bond (A=donor atom, M=transition metal) depends on the surrounding chemical structure, and can be genuine one‐electron sigma bonds only if appropriate metal ligands (Y), able to trap the charge in the desired region, are chosen. This ability is modulated by the subtle balance between the electronegativity of the different atoms along the A⋅⋅⋅M⋅⋅⋅Y bond paths. Most importantly, contrary to many TPB complexes in which boron acts as a Lewis acid, in one‐electron‐bond‐containing structures boron behaves as a Lewis base.  相似文献   

19.
Density functional theory(DFT) calculations were carried out on the gold-catalyzed cyclization of alkynyl benzodioxin to 8-hydroxy-isocoumarin reaction to show the molecular mechanism of the reaction. The conclusions obtained from this work are different from those in the previous experimental study. The results show that water molecule acts as both the reactant and the proton shuttle, and promotes the reaction with gold complexes under mild conditions. The nucleophilic addition site of water on the substrate is the C(sp3) atom on the side of the substrate far away from the oxabenzene ring, resulting in C(sp3)—O bond breaking in the substrate. The formation of new C—O bond and the cleavage of C—O bond in the substrate follow a step-by-step mechanism. The oxygen in the side-product acetone comes from the contribution of water in the reaction system. The regioselectivity of the reaction originates from the polarization of alkynyl π-electrons induced by substituents.  相似文献   

20.
To elucidate the working mechanism of the “broad substrate specificity” by the Pseudomonas aeruginosa aryl sulfatase (PAS) enzyme, we present here a full quantum chemical study performed at the density functional level. This enzyme is able to catalyze the hydrolysis of the original p‐nitrophenyl‐sulfate (PNPS) substrate and the promiscuous p‐nitrophenyl‐phosphate (PNPP) one with comparable reaction kinetics. Based on the obtained results, a multistep mechanism including activation of the nucleophile, the nucleophilic attack, and the cleavage of the S? O (P? O) bond is proposed. Regarding the phosphate monoester, the results indicate that only some steps of the promiscuous reaction are identical to those in the native process. Differences concern mainly the last step in which the His115 residue acts as a general base to accept the proton by the O atom of the FGly51 in the PNPS, whereas in PNPP, the Asp317 protonated residue works as a general acid to deliver a proton by a water molecule to the oxygen atom of the C? O bond. The shapes of the relative potential‐ energy surface (PES) are similar in the two examined cases but the rate‐determining step is different (nucleophile attack vs. nucleophile activation). The influence of the dispersion contributions on the investigated reactions was also taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号