首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A method for generating irregular triangular computational grids in two-dimensional multiply connected domains is described. A set of points around each body is defined using a simple grid generation technique appropriate to the geometry of each body. The Voronoi regions associated with the resulting global point distribution are constructed from which the Delaunay triangulation of the set of points is thus obtained. The definition of Voronoi regions ensures that the triangulation produces triangles of reasonable aspect ratios given a grid point distribution. The approach readily accommodates local clustering of grid points to facilitate variable resolution of the domain. The technique is generally applicable and has been used with success in computing triangular grids in multiply connected planar domains. The suitability of such grids for flow calculations is demonstrated using a finite element method for solution of the inviscid transonic flow over two- dimensional high-lift aerofoil configurations.  相似文献   

2.
This paper deals with the use of the continuous adjoint equation for aerodynamic shape optimization of complex configurations with overset grids methods. While the use of overset grid eases the grid generation process, the non‐trivial task of ensuring communication between overlapping grids needs careful attention. This need is effectively addressed by using a practically useful technique known as the implicit hole cutting (IHC) method. The method depends on a simple cell selection process based on the criterion of cell size, and all grid points including interior points and fringe points are treated indiscriminately in the computation of the flow field. This paper demonstrates the simplicity of the IHC method for the adjoint equation. Similar to the flow solver, the adjoint equations are solved on conventional point‐matched and overlapped grids within a multi‐block framework. Parallel computing with message passing interface is also used to improve the overall efficiency of the optimization process. The method is successfully demonstrated in several two‐ and a three‐dimensional shape optimization cases for both external and internal flow problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The Lattice-Boltzmann-Method (LBM) is a powerful and robust approach for calculating fluid flows over or through complex geometries. This method was further developed for allowing the calculation of several problems relevant to dispersed particle-laden flows. For that purpose two approaches have been developed. The first approach concerns the coupling of the LBM with a classical Lagrangian procedure where the particles are considered as point-masses and hence the particles and the flow around them are numerically not resolved. As an example of use, the flow through a single pore representing a single element of a filter medium was considered and the deposition of nano-scale particles was simulated. The temporal evolution of the deposit structures is visualised and both the filtration efficiency and the pressure drop are simulated and compared with measurements. In the second developed LBM-approach, the particles are fully resolved by the numerical grid whereby the flow around particles is also captured and it is possible to effectively calculate forces on complex particles from the bounce-back boundary condition. As a case study the flow around spherical agglomerates consisting of poly-sized spherical primary particles with sintering contact is examined. Using local grid refinement and curved wall boundary condition, accurate simulations of the drag coefficient of such complex particles were performed. Especially the effect of porosity on the drag was analysed. Moreover, the flow about very porous fractal flocks, generated by a random process, was simulated for different flock size and fractal dimension. The drag coefficients resulting from LBM simulations were compared to theoretical results for Stokes flow. Finally, scenarios with moving particles were considered. First, the sedimentation of a single particle towards a plane wall was simulated and compared with measurements for validation. Secondly, the temporal sedimentation of a cluster of 13 particles was studied. Here, the primary particles were allowed to stick together and form agglomerates. This research will be the basis for further analysing agglomerate formation in laminar and turbulent flows.  相似文献   

4.
基于分子平均自由程的热流计算壁面网格准则   总被引:5,自引:0,他引:5  
程晓丽  艾邦成  王强 《力学学报》2010,42(6):1083-1089
面向壁面热流Navier-Stokes方程数值计算的应用, 研究了壁面法向网格尺度问题.从气体分子物理学角度, 对壁面热流进行了微观统计分析,指出壁面热流与气体分子平均自由程之间的内在联系是壁面法向网格尺度存在最优下限的原因. 据此建立了一个新的壁面法向网格尺度准则, 即MFP准则.该准则简单、实用, 具有清晰的热力学物理意义, 且只依赖于壁面局部参数. 并以多种对比算例验证了MFP准则的准确性和适用性.   相似文献   

5.
An efficient computing framework, namely PFlows, for fully resolved-direct numerical simulations of particle-laden flows was accelerated on NVIDIA General Processing Units (GPUs) and GPU-like accelerator (DCU) cards. The framework is featured as coupling the lattice Boltzmann method for fluid flow with the immersed boundary method for fluid-particle interaction, and the discrete element method for particle collision, using two fixed Eulerian meshes and one moved Lagrangian point mesh, respectively. All the parts are accelerated by a fine-grained parallelism technique using CUDA on GPUs, and further using HIP on DCU cards, i.e., the calculation on each fluid grid, each immersed boundary point, each particle motion, and each pair-particle collision is responsible by one computer thread, respectively. Coalesced memory accesses to LBM distribution functions with the data layout of Structure of Arrays are used to maximize utilization of hardware bandwidth. Parallel reduction with shared memory for data of immersed boundary points is adopted for the sake of reducing access to global memory when integrate particle hydrodynamic force. MPI computing is further used for computing on heterogeneous architectures with multiple CPUs-GPUs/DCUs. The communications between adjacent processors are hidden by overlapping with calculations. Two benchmark cases were conducted for code validation, including a pure fluid flow and a particle-laden flow. The performances on a single accelerator show that a GPU V100 can achieve 7.1–11.1 times speed up, while a single DCU can achieve 5.6–8.8 times speed up compared to a single Xeon CPU chip (32 cores). The performances on multi-accelerators show that parallel efficiency is 0.5–0.8 for weak scaling and 0.68–0.9 for strong scaling on up to 64 DCU cards even for the dense flow (φ = 20%). The peak performance reaches 179 giga lattice updates per second (GLUPS) on 256 DCU cards by using 1 billion grids and 1 million particles. At last, a large-scale simulation of a gas-solid flow with 1.6 billion grids and 1.6 million particles was conducted using only 32 DCU cards. This simulation shows that the present framework is prospective for simulations of large-scale particle-laden flows in the upcoming exascale computing era.  相似文献   

6.
传统的格子波尔兹曼方法(lattice-Boltzmann method, LBM)通常基于标准均匀网格, 这主要取决于速度的空 间离散格式.均匀网格结构的特点, 使LBM在处理具有复杂边界的问题时遇到较大的困难, 从而限制了它的应用.另外, 对于较为复杂的流动, 其流场存在流动变化剧烈和平缓的区域, 在流动变化剧烈的区域, 往往需要足够的网格点才能更好地捕捉到流场信息, 而均匀网格会使得网格数量过多, 这会增加计算量, 但网格数量过少又无法获得必要的流场信息, 使LBM的计算效率降低.为了解决上述问题, 用不同的网格结构, 以顶盖驱动的腔体内流、柱体绕流和翼型绕流为例, 探讨了提高LBM算法的计算效率和适用性问题.  相似文献   

7.
This paper presents highly resolved large eddy simulations (LES) of an internal combustion engine (ICE) using an immersed boundary method (IBM), which can describe moving and stationary boundaries in a simple and efficient manner. In this novel approach, the motion of the valves and the piston is modeled by Lagrangian particles, whilst the stationary parts of the engine are described by a computationally efficient IBM. The proposed mesh-free technique of boundary representation is simple for parallelization and suitable for high performance computing (HPC). To demonstrate the method, LES results are presented for the flow and the combustion in an internal combustion engine. The Favre-filtered Navier-Stokes equations are solved for a compressible flow employing a finite volume method on Cartesian grids. Non-reflecting boundary conditions are applied at the intake and the exhaust ports. Combustion is described using a flame surface density (FSD) model with an algebraic reaction rate closure. A simplified engine with a fixed axisymmetric valve (see Appendix A) is employed to show the correctness of the method while avoiding the uncertainties which may be induced by the complex engine geometry. Three test-cases using a real engine geometry are investigated on different grids to evaluate the impact of the cell size and the filter width. The simulation results are compared against the experimental data. A good overall agreement was found between the measurements and the simulation data. The presented method has particular advantages in the efficient generation of the grid, high resolution and low numerical dissipation throughout the domain and an excellent suitability for massively parallel simulations.  相似文献   

8.
This research work is aimed at proposing models for the hydrodynamic force and torque experienced by a spherical particle moving near a solid wall in a viscous fluid at finite particle Reynolds numbers. Conventional lubrication theory was developed based on the theory of Stokes flow around the particle at vanishing particle Reynolds number. In order to account for the effects of finite particle Reynolds number on the models for hydrodynamic force and torque near a wall, we use four types of simple motions at different particle Reynolds numbers. Using the lattice Boltzmann method and considering the moving boundary conditions, we fully resolve the flow field near the particle and obtain the models for hydrodynamic force and torque as functions of particle Reynolds number and the dimensionless gap between the particle and the wall. The resolution is up to 50 grids per particle diameter. After comparing numerical results of the coefficients with conventional results based on Stokes flow, we propose new models for hydrodynamic force and torque at different particle Reynolds numbers. It is shown that the particle Reynolds number has a significant impact on the models for hydrodynamic force and torque. Furthermore, the models are validated against general motions of a particle and available modeling results from literature. The proposed models could be used as sub-grid scale models where the flows between particle and wall can not be fully resolved, or be used in Lagrangian simulations of particle-laden flows when particles are close to a wall instead of the currently used models for an isolated particle.  相似文献   

9.
非结构混合网格消除了结构网格节点的结构性限制,可以较好地处理边界,同时兼顾了粘性边界层模拟的需求,具有灵活性大、对复杂外形适应能力强和生成耗时短等优点,在飞行器气动特性模拟中得到广泛应用.本文针对非结构混合网格的特点,把前期针对非结构混合网格气动力高精度模拟发展改进的梯度计算方法和Roe格式熵修正方法推广应用到气动热流的数值模拟.以典型钝锥标模外形的高超声速绕流为研究对象,开展了不同网格形式和第一层网格不同间距的影响研究.结果 表明,热流计算时,头部物面网格最好采用四边形或四边形交叉剖分得到的三角形网格,物面法向的网格雷诺数取20左右,为热流计算时非结构混合网格的生成提供了指导,同时验证了计算方法的有效性和可靠性.  相似文献   

10.
发展了一种在非正交同位网格下以笛卡儿速度分量作为动量方程的独立变量、压力与速度耦合的S IM-PLER算法。该算法的特点是显式处理界面速度中的压力交叉导数项,得出压力与压力修正方程,使得压力及压力修正值与界面逆变速度直接耦合。通过对分汊通道内的流动问题进行验证计算,结果表明该算法可以有效而准确地模拟复杂区域内的流动与换热问题。  相似文献   

11.
A multi‐layer hybrid grid method is constructed to simulate complex flow field around 2‐D and 3‐D configuration. The method combines Cartesian grids with structured grids and triangular meshes to provide great flexibility in discretizing a domain. We generate the body‐fitted structured grids near the wall surface and the Cartesian grids for the far field. In addition, we regard the triangular meshes as an adhesive to link each grid part. Coupled with a tree data structure, the Cartesian grid is generated automatically through a cell‐cutting algorithm. The grid merging methodology is discussed, which can smooth hybrid grids and improve the quality of the grids. A cell‐centred finite volume flow solver has been developed in combination with a dual‐time stepping scheme. The flow solver supports arbitrary control volume cells. Both inviscid and viscous flows are computed by solving the Euler and Navier–Stokes equations. The above methods and algorithms have been validated on some test cases. Computed results are presented and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Suspensions of solid particles in liquids are often made to flow in devices with characteristic dimensions comparable to that of the suspended particles, the so-called confined situation, as in the case of several microfluidic applications. Combination of confinement with viscoelasticity of the suspending liquid can lead to peculiar effects. In this paper we present the first 3D simulation of the dynamics of a particle suspended in a viscoelastic liquid under imposed confined shear flow. The full system of equations is solved through the finite element method. A DEVSS/SUPG formulation with a log-representation of the conformation tensor is implemented, assuring stable and convergent results up to high flow rates. Particle motion is handled through an ALE formulation. To optimize the computational effort and to reduce the remeshing and projection steps required when the mesh becomes too distorted, a rigid motion of the grid in the flow direction is performed, so that, in fact, the particle moves along the cross-streamline direction only.Confinement and viscoelasticity are found to induce particle migration, i.e., transverse motion across the main flow direction, towards the closest wall. Under continuous shearing, three different dynamical regimes are recognized, related to the particle-wall distance. A simple heuristic argument is given to link the cross-flow migration to normal stresses in the suspending liquid.The analysis is then extended to a time-dependent shear flow imposed by periodically inverting the direction of wall motion. A slower migration is found for higher forcing frequency. A peculiar effect arises if the inversion period is chosen close to the fluid relaxation time: the migration velocity oscillates around zero, and the overall migration is suppressed. Such novel prediction of a dynamic instability scenario, with the particle escaping the center plane of the channel, and many features of the computed results, are in nice agreement with recent experiments reported in the literature [14].  相似文献   

13.
基于贴体网格的VOF方法数模流场研究   总被引:1,自引:0,他引:1  
提出了一种基于VOF方法的模拟具有复杂边界形状结构物附近流场的新算法,BFC—SIMPLE—VOF算法。采用坐标变换方法实现了任意复杂区域的结构化网格划分,在贴体网格下对二维不可压缩粘性流体的控制方程进行了离散。提出了基于交错网格的修正SIMPLE算法来迭代求解压力一速度场,修正了贴体坐标下的界面跟踪方法(VOF方法)...  相似文献   

14.
动网格生成技术及非定常计算方法进展综述   总被引:17,自引:1,他引:16  
对应用于飞行器非定常运动的数值计算方法(包括动态网格技术和相应的数值离散格式)进行了综述.根据网格拓扑结构的不同,重点论述了基于结构网格的非定常计算方法和基于非结构/混合网格的非定常计算方法,比较了各种方法的优缺点.在基于结构网格的非定常计算方法中,重点介绍了刚性运动网格技术、超限插值动态网格技术、重叠动网格技术、滑移动网格技术等动态结构网格生成方法,同时介绍了惯性系和非惯性系下的控制方程,讨论了非定常时间离散方法、动网格计算的几何守恒律等问题.在基于非结构/混合网格的非定常计算方法中,重点介绍了重叠非结构动网格技术、重构非结构动网格技术、变形非结构动网格技术以及变形/重构耦合动态混合网格技术等方法,以及相应的计算格式,包括非定常时间离散、几何守恒律计算方法、可压缩和不可压缩非定常流动的计算方法、各种加速收敛技术等.在介绍国内外进展的同时,介绍了作者在动态混合网格生成技术和相应的非定常方法方面的研究与应用工作.  相似文献   

15.
In this paper the generation of general curvilinear co-ordinate systems for use in selected two-dimensional fluid flow problems is presented. The curvilinear co-ordinate systems are obtained from the numerical solution of a system of Poisson equations. The computational grids obtained by this technique allow for curved grid lines such that the boundary of the solution domain coincides with a grid line. Hence, these meshes are called boundary fitted grids (BFG). The physical solution area is mapped onto a set of connected rectangles in the transformed (computational) plane which form a composite mesh. All numerical calculations are performed in the transformed plane. Since the computational domain is a rectangle and a uniform grid with mesh spacings Δξ = Δη = 1 (in two-dimensions) is used, the computer programming is substantially facilitated. By means of control functions, which form the r.h.s. of the Poisson equations, the clustering of grid lines or grid points is governed. This allows a very fine resolution at certain specified locations and includes adaptive grid generation. The first two sections outline the general features of BFGs, and in section 3 the general transformation rules along with the necessary concepts of differential geometry are given. In section 4 the transformed grid generation equations are derived and control functions are specified. Expressions for grid adaptation arc also presented. Section 5 briefly discusses the numerical solution of the transformed grid generation equations using sucessive overrelaxation and shows a sample calculation where the FAS (full approximation scheme) multigrid technique was employed. In the companion paper (Part II), the application of the BFG method to selected fluid flow problems is addressed.  相似文献   

16.
喻虹 《爆炸与冲击》2003,23(6):493-500
针对大变形流体动力学数值计算中经常需要应用的网格重构与物理量重映技术,提出了一种逻辑简单的质点积分守恒重映方法。将旧网格细分为众多有体积的质点,并将旧网格的物理量分配到各个质点,新网格各守恒量的积分直接由落在新网格内的所有质点的物理量累加。建立了收敛速度极快的计算格式,采用的控制体很好地解决了速度的重映计算问题。分析了此守恒重映方法的收敛性与守恒性,研究了积分控制体对速度计算的影响。  相似文献   

17.
The lattice Boltzmann method (LBM) is a useful technique for simulating multiphase flows and modeling complex physics. Specifically, we use LBM combined with a direct-forcing (DF) immersed boundary (IB) method to simulate fluid–particle interactions in two-phase particulate flows. Two grids are used in the simulation: a fixed uniform Eulerian grid for the fluid phase and a Lagrangian grid that is attached to and moves with the immersed particles. Forces are calculated at each Lagrangian point. To exchange numerical information between the two grids, discrete delta functions are used. The resulting DF IB-LBM approach is then successfully applied to a variety of reference flows, namely the sedimentation of one and two circular particles in a vertical channel, the sedimentation of one or two spheres in an enclosure, and a neutrally buoyant prolate spheroid in a Couette flow. This last application proves that the developed approach can be used also for non-spherical particles. The three forcing schemes and the different factors affecting the simulation (added mass effect, corrected radius) are also discussed.  相似文献   

18.
This paper presents two techniques allowing local grid refinement to calculate the transport of vortices. one is the patched grid (PG) method which allows non‐coincident interfaces between blocks. Treatment of the non‐coincident interfaces is given in detail. The second one is the adaptive mesh refinement (AMR) method which has been developed in order to create embedded sub‐grids. The efficiency of these two methods is demonstrated by some validating tests. Then the PG and AMR strategies are applied in the computation of the transport of vortices. We start with a simple vortex flow in a cubic box. Then, the flowfield around a complex aircraft configuration is calculated using the two refinement techniques. Results are compared with a fine, referenced grid calculation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
从网格装配和插值计算两个主要方面对现有的重叠网格方法进行了综述。首先,从挖洞方法和建立嵌入网格关系环节的寻点技术出发归纳和介绍了网格装配方法;其次,介绍了数值迭代过程中的插值计算方法,并特别讨论了插值守恒性以及插值计算精度等问题;另外,对重叠网格方法的并行计算和应用成果也作了介绍;最后,通过总结认为重叠网格方法在改进网格装配方法、改善插值和并行计算效率等方面仍需进一步研究。  相似文献   

20.
The Godunov‐projection method is implemented on a system of overlapping structured grids for solving the time‐dependent incompressible Navier–Stokes equations. This projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The Godunov procedure is applied to estimate the non‐linear convective term in order to provide a robust discretization of this terms at high Reynolds number. In order to obtain the pressure field, a separate procedure is applied in this modified Godunov‐projection method, where the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain, as they offer the flexibility of simplifying the grid generation around complex geometrical domains. This combination of projection method and overlapping grid is also parallelized and reasonable parallel efficiency is achieved. Numerical results are presented to demonstrate the performance of this combination of the Godunov‐projection method and the overlapping grid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号