首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We wish to construct airfoils that have the highest free-stream Mach number M for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils which maximize M for a given thickness ratio are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that the optimal airfoil satisfying a given set of constraints is the one possessing the longest possible arc length of sonic velocity. A boundary-value problem is formulated in the hodograph plane using transonic small-disturbance theory whose solution determines an airfoil with long sonic arcs. For small lift coefficients, the hodograph domain covers two Riemann sheets and a finite-difference method is used to solve the boundary-value problem on this domain. A numerical integration of the solution around the boundary yields an airfoil shape, and three examples are discussed. The performance of these airfoils is compared with standard airfoils having the same lift coefficient and , and it is shown that the calculated airfoils have a 6%–10% increase in critical M .This research was supported by the Air Force Office of Scientific Research under Grant F49620-93-1-0022DEF and by the National Science Foundation under Grant DMS-9157546. Research support for M.C.A.K. was given by the IBM Corporation under a Graduate Research Fellowship.  相似文献   

2.
The mechanisms of sound generation and the kind of interaction of vortices with airfoils in an airflow are investigated. Experiments have been performed in stationary flow with vortices of a Kármán vortex street and in a shock tube flow with a starting vortex of a lifting airfoil. Depending on the dimensions of vortices and airfoils, their distance, and the flow Mach numbers, different kinds and amplitudes of upstream propagating steep sound waves occur.  相似文献   

3.
Effects of the particle Stokes number on wind turbine airfoil erosion   总被引:1,自引:0,他引:1  
Under natural conditions, wind turbines are inevitably eroded by the action of sand-wind flow. To further investigate the effects of dust drift on the erosion of the wind turbine blades in sand-wind environments, the effects of the wind velocity, particle diameter, and particle density on the erosion of wind turbine airfoils are studied, and the effects of the particle Stokes number on the airfoil erosion are discussed. The results show that, when the angle of attack(AOA) is 6.1°, there will be no erosion on the airfoil surface if the particle Stokes number is lower than 0.013 5, whereas erosion will occur if the particle Stokes number is higher than 0.015 1. Therefore, there exists a critical range for the particle Stokes number. When the particle Stokes number is higher than the maximum value in the critical range, airfoil erosion will occur. The result is further confirmed by changing the particle diameter, particle density, and inflow speed. It is shown that the erosion area on the airfoil and the maximum erosion rate are almost equal under the same particle Stokes number and AOA. The extent of airfoil erosion increases when the particle Stokes number increases, and the critical particle Stokes number increases when the AOA increases. Moreover, the geometric shape of the airfoil pressure surface greatly affects the airfoil erosion, especially at the curvature near the leading edge.  相似文献   

4.
A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and NACA-64-A010, over a wide range of off-design Mach numbers. All results are compared with the usual single-point optimization. We use numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm to find the optimum location and shape of the SCB. We show that the application of SCBs may increase the aerodynamic performance of an RAE-2822 airfoil by 21.9 and by 22.8 % for a NACA-64-A010 airfoil compared to the no-bump design in a particular flight condition. We have also investigated the simultaneous usage of two bumps for the upper and the lower surfaces of the airfoil. This has resulted in a 26.1 % improvement for the RAE-2822 compared to the clean airfoil in one flight condition.  相似文献   

5.
A turbulent transonic flow past two symmetric airfoils with flat midparts is studied numerically. Using the Reynolds-averaged Navier-Stokes equations, we analyze the flow past a 9% thick airfoil with an elliptic nose. A range of the free-stream Mach number M, in which flow bifurcations occur, is determined. Values of M that give rise to significant changes in the lift coefficient with variations of the angle of attack are specified. Flow bifurcations are also revealed for a thin double wedge, i.e., a sort of a hexagon.  相似文献   

6.
The signal speed, namely the local sound speed plus the flow velocity, behind the reflected shocks produced by the interaction of weak shock waves (M i < 1.4) with rigid inclined surfaces has been measured for several shock strengths close to the point of transition from regular to Mach reflection. The signal speed was measured using piezo-electric transducers, and with a multiple schlieren system to photograph acoustic signals created by a spark discharge behind a small aperture in the reflecting surfaces. Both methods yielded results with equal values within experimental error. The theoretical signal speeds behind regularly reflected shocks were calculated using a non-stationary model, and these agreed with the measured results at large angles of incidence. As the angle of incidence was reduced, for the same incident shock Mach number, so as to approach the point of transition from regular to Mach reflection, the measured values of the signal speed deviated significantly from the theoretical predictions. It was found, within experimental uncertainty, that transition from regular to Mach reflection occurred at the experimentally observed sonic point, namely, when the signal speed was equal to the speed of the reflection point along the reflecting surface. This sonic condition did not coincide with the theoretical value.  相似文献   

7.
计算气动弹性若干研究进展   总被引:9,自引:2,他引:7  
杨国伟 《力学进展》2009,39(4):406-420
郭永怀和钱学森先生早在1946年提出了上临界马赫数的概念,即对于亚声速的二维无旋流 动,当来流速度达到下临界马赫数时开始出现声速. 稍增加来流速度,光滑无旋的亚、超声 速混合流动可以继续存在,理论上只有当来流速度达到上临界马赫数出现激波后, 光滑无旋流动才被破坏. 随后, 航空工程界先驱们为提高阻力发散马赫数,降低马赫数1附近的飞机 阻力, 为突破声障, 提出了超临界翼型设计技术,引进了后掠翼设计概念, 提出了跨声速面 积律理论,导致了20世纪军民用航空飞行器的大规模发展.随着计算机技术和计算方法的 进步,不同程度地简化流体控制方程的求解方法得到大发展.基于雷诺平均Navier-Stokes方程的计算流体力学已广泛应用于飞机性能评估、复杂流动机理分析.目前, 气动外形优化设计、气动/结构耦合干扰、气动噪声等多学科问题成为空气动力学的研究热点.该文介绍作者的团队近年来在计算气动弹性研究方面的若干进展,作为对郭永怀先生诞辰100周年的怀 念.   相似文献   

8.
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C  < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.  相似文献   

9.
Inflow noise from a symmetric airfoil interacting with homogeneous and isotropic turbulence is investigated focusing on the effects of airfoil geometry. The numerical method employed is based on computational aeroacoustic techniques using the high-order dispersion-relation-preserving finite-difference schemes for solving two-dimensional linearized Euler equations. Effects on inflow noise of the airfoil thickness, leading-edge radius, and freestream Mach number are examined by comparing the acoustic power spectrum of the airfoils and their flow field characteristics. Acoustic power levels of airfoils are found to exponentially decrease in the high-frequency range as airfoil thickness increases because incident turbulent velocities are more distorted in the larger stagnation region near the leading edge. This distortion is shown to be related to the slope angle of the streamline of steady mean flow near the leading edge. However, this high-frequency reduction weakens as the Mach number increases due to the decreasing slope angle. In addition, the chordwise velocity component in the incident turbulence contributes more to the radiating acoustic pressure level as the freestream Mach number increases, which also results in less high-frequency reduction at higher freestream Mach number. At fixed airfoil thickness, increasing the leading-edge radius leads to decreases in the acoustic power level, which may also be explained by size variation of the stagnation region around the leading edge. An approximate algebraic formula for acoustic power spectra is derived on the basis of these observations. Acoustic power spectra predicted using this formula are shown to closely follow the numerical results. Finally, the applicability of the algebraic formula and the current numerical methods to more realistic problems are confirmed by comparing their predictions with the measured data.  相似文献   

10.
The aerodynamic forces and flow structures of two airfoils performing “fling and subsequent translation“ and “translation and subsequent clap“ are studied by numerically solving the Navier-Stokes equations in moving overset grids. These motions are relevant to the flight of very small insects. The Reynolds number, based on the airfoil chord length c and the translation velocity U, is 17. It is shown that: (1) For two airfoils performing fling and subsequent translation, a large lift is generated both in the fling phase and in the early part of the translation phase. During the fling phase,a pair of leading edge vortices of large strength is generated; the generation of the vortex pair in a short period results in a large time rate of change of fluid impulse, which explains the large lift in this period. During the early part of the translation, the two leading edge vortices move with the airfoils;the relative movement of the vortices also results in a large time rate of change of fluid impulse, which explains the large lift in this part of motion. (In the later part of the translation, the vorticity in the vortices is diffused and convected into the wake.) The time averaged lift coefficient is approximately 2.4 times as large as that of a single airfoil performing a similar motion. (2) For two airfoils performing translation and subsequent clap, a large lift is generated in the clap phase. During the clap, a pair of trailing edge vortices of large strength are generated; again, the generation of the vortex pair in a short period (which results in a large time rate of change of fluid impulse) is responsible for the large lift in this period. The time averaged lift coefficient is approximately 1.6 times as large as that of a single airfoil performing a similar motion. (3) When the initial distance between the airfoils (in the case of clap, the final distance between the airfoils) varies from 0.1 to 0.2c, the lift on an airfoil decreases only slightly but the torque decreases greatly. When the distance is about lc, the interference effects between the two airfoils become very small.  相似文献   

11.
The basic inverse boundary value problem of aerohydrodynamics for a two-element airfoil is analytically and numerically solved in the complete formulation. The problems of designing biplane airfoils and an airfoil with a trailing-edge flap or leading edge flap (slat) are solved for a given distribution over the unknown contours of the velocity or the pressure as a function of the contour arc abscissa of the airfoils which depends on a finite number of the parameters.  相似文献   

12.
The hodograph method is used to formulate several design problems in transonic flow using small-disturbance theory. Analytical and numerical methods give solutions to several optimum critical airfoil designs with different constraints on the tail angle. Special airfoil shapes flying at free-stream Mach number one are designed. The problem of constructing a shock-free body of revolution at subsonic speed but having a supersonic zone is formulated in the hodograph and solved numerically. Received 10 January 1997 and accepted 14 April 1997  相似文献   

13.
蜻蜓翅膀具有独特的褶皱状形貌.研究者们致力于利用仿生学原理,设计在低雷诺数条件下具有更优气动性能的褶皱翼型.本文采用计算流体力学方法,求解二维不可压Navier-Stokes方程组,探讨了四种翼型(平板翼型、流线翼型、小幅度褶皱翼型和大幅度褶皱翼型)的气动表现.在低雷诺数条件下得到以下结果:(1) 较小幅度的褶皱结构有利于增加升力和减小阻力.(2) 雷诺数变化时褶皱翼型的升力系数呈非线性变化;在特定雷诺数区间,幅度相近的褶皱翼型会发生相对气动优势的转变.(3) 褶皱结构内的回流区通过减小粘性阻力,使得翼型总阻力下降.(4) 翼型前缘的极小区域会产生脉冲高升力,对升力表现产生较大影响.这些结果表明,调整褶皱幅度是实现褶皱翼型气动优化的有效方案.  相似文献   

14.
A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport(SST)k-w turbulence model to predict the transition region for a laminar-turbulent boundary layer. The non-uniform free-form deformation(NFFD) method based on the non-uniform rational B-spline(NURBS) basis function is introduced to the airfoil parameterization.The non-dominated sorting genetic algorithm-II(NSGA-II) is used as the search algorithm, and the surrogate model based on the Kriging models is introduced to improve the efficiency of the optimization system. The optimization system is set up based on the above technologies, and the robust design about the uncertainty of the Mach number is carried out for NASA0412 airfoil. The optimized airfoil is analyzed and compared with the original airfoil. The results show that natural laminar flow can be achieved on a supercritical airfoil to improve the aerodynamic characteristic of airfoils.  相似文献   

15.
We consider self-similar (pseudo-steady) shock reflection at an oblique wall. There are three parameters: wall corner angle, Mach number, angle of incident shock. Ever since Ernst Mach discovered the irregular reflection named after him, researchers have sought to predict precisely for which parameters the reflection is regular. Three conflicting proposals—the detachment, sonic and von Neumann criteria—have been studied extensively without a clear result. We demonstrate that the sonic criterion is not correct. We consider polytropic potential flow and prove that there is an open nonempty set of parameters that admit a global regular reflection with a reflected shock that is transonic. We also provide a clear physical reason: the flow type (sub- or supersonic) is not decisive; instead the reflected shock type (weak or strong) determines whether structural perturbations decay towards the reflection point.  相似文献   

16.
Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non- symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil's shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interac- tions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter's wing.  相似文献   

17.
Measurement of the noise generation at the trailing edge of porous airfoils   总被引:2,自引:0,他引:2  
Owls are commonly known for their quiet flight, enabled by three adaptions of their wings and plumage: leading edge serrations, trailing edge fringes and a soft and elastic downy upper surface of the feathers. In order to gain a better understanding of the aeroacoustic effects of the third property that is equivalent to an increased permeability of the plumage to air, an experimental survey on a set of airfoils made of different porous materials was carried out. Several airfoils with the same shape and size but made of different porous materials characterized by their flow resistivities and one non-porous reference airfoil were subject to the flow in an aeroacoustic open jet wind tunnel. The flow speed has been varied between approximately 25 and 50 m/s. The geometric angle of attack ranged from −16° to 20° in 4°-steps. The results of the aeroacoustic measurements, made with a 56-microphone array positioned out of flow, and of the measurements of lift and drag are given and discussed.  相似文献   

18.
多喷口高效能厚翼的研究   总被引:1,自引:0,他引:1  
王春雨  孙茂 《力学学报》1999,31(5):611-617
提出了以下高效能翼型的思想:用多喷口小速度切向吹气控制厚翼上的流动分离,使流动接近于理想流状况,以产生大升力,小阻力;因多喷口小速度吹气耗能小,故翼型的有效升阻比可以很大.基于雷诺平均N-S方程进行了数值模拟实验.主要结果表明:对于厚度为0.4的儒氏翼型,在升力系数高达3.5时,有效升阻比可达约50(单喷口吹气约为23);对于厚度为0.4的"升力体"翼型,在升力系数达2.2时,有效升阻比可达40(喷口吹气约为10).  相似文献   

19.
The schooling behavior of rigid and flexible NACA0017 airfoils undergoing a heaving motion was experimentally explored using a merry-go-round configuration. Each airfoil was attached to the end of a horizontal support bar whose other end was connected to a freely rotating vertical axis. The axis was forced to undergo a sinusoidal motion in the vertical direction to generate a pure heaving motion of the airfoil in the frequency range of 0.4 to 4.8 Hz. The propulsion due to the heaving airfoil was expressed as the horizontal rotational speed of the support bar. This experimental setup simulates an infinite schooling of airfoils separated by a streamwise distance d undergoing in-phase heaving motions. The ratio of the distance to the chord length, d/c, was determined by the number of airfoils (2 ≤ n ≤ 8). The variation in rotational frequency F as a function of heaving frequency f was determined using different experimental parameters. The schooling number S = f /(nF), which represents the number of heaving oscillations between each pair of successive airfoils, was introduced to explain the schooling behavior of the airfoils. The effects of airfoil flexibility, d/c and f on the propulsive performance were examined in the context of the schooling behavior of the airfoils.  相似文献   

20.
Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading‐edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine–cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号