首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A clear understanding of the mechanism responsible for large amplitude shock pulsations ahead of a hemispherical cavity in supersonic flow is presented for the first time in this article. This has applications in supersonic parachute decelerators during the atmospheric descent stage of aerospace vehicles. A cell-centered finite volume code FaSTAR is used to solve the full Navier–Stokes equations on a hemispherical shell facing a Mach 4.0 supersonic free stream. The numerical method is validated against earlier experimental results. First, Flow Configuration A appears consisting of an axisymmetric shock that undergoes low-amplitude oscillations. This flow transitions to Flow Configuration B that has an asymmetric shock structure and undergoes large-amplitude non-stationary shock pulsations. The shock stand-off distance in Flow Configuration B is 1.65 times that in Flow Configuration A. The generation of vortices from the curved shock, amplification of vortices of one kind due to the dynamics of the cavity flow, and further interaction of these amplified vortices with the shock in a loop causes the large-amplitude shock pulsations. The oscillation frequencies as determined from cavity pressure and shock stand-off distance signals extracted from the unsteady results are 1.26 kHz during Flow Configuration A, and 859 and 863 Hz during the non-stationary pulsations of Flow Configuration B. The Helmholtz resonator model predicts quite accurately the frequency of Flow Configuration A (1.27 kHz), and to a good extent the frequency in Flow Configuration B (916.7 Hz).  相似文献   

2.
机匣与叶片的相对转动是影响涡轮叶顶间隙流动的重要冈素之一.对LISA 1.5级轴流涡轮间隙内部流动的数值计算结果表明:叶片转动对涡轮间隙流动有阻塞作用.叶片静止时,由于阻塞作用消失,导致间隙入口速度增大,间隙流鼍增加,并且通过间隙的流体全部卷起形成间隙涡.同时在叶片顶部吸力面侧前缘、中部各形成一个间隙涡,使得间隙流动损失增加.而且转速下降会加剧动叶出口截面气流过偏/偏转不足现象.同时叶片静止时,间隙前部各个弦长截面内静压自间隙入口开始一直呈增加趋势,直到叶片尾缘附近截面,间隙截面内静压才逐渐稳定.  相似文献   

3.
This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.  相似文献   

4.
The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement.In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency.The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume.The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps.  相似文献   

5.
This paper presents results of numerical computations for floating off-shore wind turbines using, as an example, a machine of 10-MW rated power. The aerodynamic loads on the rotor are computed using the Helicopter Multi-Block flow solver developed at the University of Liverpool. The method solves the Navier–Stokes equations in integral form using the arbitrary Lagrangian–Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform are computed using the Smoothed Particle Hydrodynamics method, which is mesh-free and represents the water and floating structures by a set of discrete elements, referred to as particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the results are presented in this paper. The importance of coupling is assessed and the loosely coupled algorithm used is described in detail alongside the obtained results.  相似文献   

6.
In a number of cases of supersonic flow past bodies with recesses pulsations in the flow arise [1–3]. Experiments [4, 5] indicate that stabilization of the steady supersonic flow past the body with a recess on which a shock wave is incident takes place after a series of oscillations of the bow wave. Numerical calculation of the interaction of a supersonic jet with a cylindrical cavity [6] reveals that damped pressure pulsations arise inside the cavity if the jet is homogeneous, and undamped pulsations it is inhomogeneous. The authors explain the damping of the pulsations by the influence of artificial viscosity. This paper investigates experimentally and theoretically (by numerical methods) the oscillations of the bow shock wave and the parameters of the flow behind it in the case of unsteady reflection of a shock wave from a body with a cylindrical recess turned towards the flow. The problem is posed as follows. A plane shock wave with constant parameters impinges on a cylinder with a cavity. The unsteady flow originating from this interaction is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 199–202, September–October, 1984.  相似文献   

7.
The paper presents the results of experimental studies of vibrations of an elastic hose which are induced by a pulsating fluid flow. It was found that there is a possibility of parametric resonances: principal and combination associated with certain modes of vibrations. The influence of frequency and the amplitude of pulsation, average flow velocity, pressure inside pipe, the length of the hose, and the temperature on the ranges of parametric vibrations were analysed. The character of vibrations in resonance ranges was determined by showing time histories and the results of spectral analyses. A flexible hose applied in high-pressure hydraulic systems was used as an object of research. The values of basic parameters which describe the hose׳s mechanical properties were identified experimentally. The results of the experiments were compared with the results of numerical simulations conducted on the basis of the methodology proposed in Part I of this paper.  相似文献   

8.
This paper presents the implementation of all‐Mach Roe‐type schemes in a fully implicit CFD solver. Simple 2D cases, such as the flow around inviscid and viscous aerofoils, were used for an initial validation of these methods, along with more challenging computations consisting of the 3D flow around the Model Experiments in Controlled Conditions wind turbine, in parked and rotating conditions. This work is motivated by the increased interest of the wind turbine industry in larger diameter wind turbines where compressibility effects near the blade tips may be important. Instead of using an incompressible flow solver, this paper explores the option of modifying an existing, efficient, compressible flow solver for use at lower Mach numbers. The good performance of the Roe solver and its popularity influenced the selection of schemes for this work. The results suggest that effective all‐Mach solutions are possible with implicit solvers, and the paper defines the implementation of the new fluxes and Jacobian, including an investigation of some numerical parameters, using as platform the Helicopter Multi‐Block solver of Liverpool University. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
On the basis of the Helmholtz decomposition, a grid‐free numerical scheme is provided for the solution of unsteady flow in hydraulic turbines. The Lagrangian vortex method is utilized to evaluate the convection and stretch of the vorticity, and the BEM is used to solve the Neumann problem to define the potential flow. The no‐slip boundary condition is satisfied by generating vortex sticks at the solid surface. A semi‐analytical regularization technique is applied to evaluate the singular boundary surface integrals of the potential velocity and its gradients accurately. The fast multipole method was extended to evaluate the velocity and velocity gradients induced by the discretized vortex blobs in the Lagrangian vortex method. The successful simulation for the unsteady flow through a hydraulic turbine's runner has manifested the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The magnitude and temporal variations of wind speed considerably influence aerodynamic and structural responses of MW-sized horizontal axis wind turbines. Thus, this paper investigates the variations in airloads and blade behavior of a wind turbine blade resulting from operations in sheared and turbulent flow conditions. First, in order to validate the present methods, comparisons of aerodynamic results were made among the blade element momentum method, free-wake method, and numerical results from the previous studies. Then, the validated methods were applied to a national renewable energy laboratory 5 MW reference wind turbine model for fluid–structure interaction analyses. From the numerical simulations, it can be clearly seen that unfavorable airloads and blade deformations occur due to the sheared and turbulent flow conditions. In addition, it is clear that wake impacts are not as substantial at those of high wind speeds; however, the effects obviously affect the aerodynamic and structural behaviors of the blade at lower wind speeds. Therefore, it is concluded that the numerical results markedly indicate the demand for accurate assessment of wake dynamics for accurate estimations of the aerodynamic and structural responses for sheared and turbulent flow environments.  相似文献   

11.
This paper presents the results of an experimental study of a boundary layer disturbed by an incident shock for parameters which are characteristic of problems for flow about blade profiles in the final stages of high-power steam turbines.  相似文献   

12.
脆性岩石破裂过程损伤与渗流耦合数值模型研究   总被引:22,自引:0,他引:22  
大量的实验结果表明,脆性岩石的渗透性不是一个常量,而是应力和应力诱发损伤破裂的函数.建立了一个描述非均匀岩石渗流-应力-损伤耦合数学模型(FSD Model),开发出岩石破裂过程渗流-应力-损伤耦合分析计算系统(F-RFPA^2D).在该系统中,单元的力学、水力学性质根据统计分布而变化,以体现材料的随机不均质性,材料在开裂破坏过程中流体压力传递通过单元渗流-损伤耦合迭代来实现.该系统能够对岩石试件在孔隙水压力和双轴荷载作用下裂纹的萌生、扩展过程中渗透率演化规律及其渗流-应力耦合机制进行模拟分析.最后,给出两个算例:算例1模拟载荷作用下岩石应力应变-渗透率全过程.模拟结果表明,非均匀性对岩石的应力峰值强度、峰值前后其渗透性演化规律及其破裂机制影响十分明显,模拟结果和实验结果较为一致;算例2模拟孔隙水压力作用下岩石拉伸断裂过程,通过和物理实验对比验证,验证了模型计算结果的可靠性。  相似文献   

13.
This paper presents detailed experimental results on the static and dynamic behaviour of a hydraulic pressure relief valve with poppet valve body, with a special emphasis on the parameters influencing the valve instability. The first part of the paper presents the static measurements; sonic velocity in the hydraulic hose, discharge coefficient and fluid flow forces. The results are compared to the data found in the literature and a reasonable agreement was found. The second part presents dynamic measurements of valve chatter. While varying the feed flow rate, pressure and displacement time histories were recorded for a wide range of set pressure. It is shown that the spectra of both signals have similar frequency content, moreover, the frequency of chatter is fairly constant for a wide parameter range, both in terms of flow rate and set pressure. The regimes of qualitatively different motion forms (stable operation, free, impacting and chaotic oscillations) are shown in the flow rate–set pressure parameter plane.  相似文献   

14.
A numerical approach is proposed to simulate the interaction between flow and flexible nets in steady current. The numerical approach is based on the joint use of the porous-media model and the lumped-mass model. The configuration of flexible nets can be simulated using the lumped-mass model and the flow field around fishing nets can be simulated using the porous-media model. Using an appropriate iterative scheme, the fluid–structure interaction problem can be solved and the steady flow field around flexible nets can be obtained. In order to validate the numerical models, the numerical results were compared with the data obtained from corresponding physical model tests. The comparisons show that the numerical results are in good agreement with the experimental data. Using the proposed numerical approach, this paper presents the flow field around a single flexible net and two flexible nets with a spacing distance. Both the configuration of the flexible nets and the flow velocity results are in accordance with those of the corresponding physical model tests.  相似文献   

15.
The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.  相似文献   

16.
This paper presents numerical and experimental investigation of the performance and internal flow field characteristics of twin-entry radial inflow turbines at full and extreme partial admission conditions. The turbine is tested on a turbocharger test facility, which was developed for small and medium size turbochargers. Experimental results show that the lowest efficiency corresponds to extreme conditions. Therefore, flow field analyzing is employed to consider these conditions. The flow pattern in the volute and impeller of a twin-entry turbine is analyzed using an in-house fully three-dimensional viscous flow solver. The computational performance results are compared with the experimental results and good agreement is found. The flow field at the outlet of the turbine is investigated using a five-hole pressure probe; the numerical results are also compared with experimental measurements at the outlet of the rotor. For the volute, results show that lowest entropy gain factor corresponds to the extreme conditions, particularly when shroud side entry is fully closed. At the inlet of the rotor for equal admission conditions, the incidence angle is mostly in the optimum values. However, large variation in the incidence angle is seen in the extreme conditions, which lead to larger incidence losses and consequently a lower efficiency. In addition, entropy distribution contours corresponding to the exit plane are considered. For full admission, the location of low entropy gain factor at this plane occupies a region near the shroud side of suction surface as well as near the hub side of the pressure surface that corresponds to a region of high absolute flow angle. However, for the extreme cases, the low entropy gain factor occupies a relatively larger region near the shroud side than full admission. So, higher loss generation is noted at the extreme cases. Moreover, this entropy gain factor region is increased when shroud side entry is fully closed.  相似文献   

17.
The problem of heat transfer in viscous laminar pulsatile flow between two parallel plates is solved by means of a finite difference method. Boundary conditions of constant wall temperature and constant wall heat flux are considered separately. The numerical results show that flow pulsations change the instantaneous Nusselt number, but do not have any significant effect on the time-averaged values. A trend in reduction of timeaveraged Nusselt number is observed when the amplitude of flow pulsation increases and the frequency decreases. The validity of the result is limited to the case when no flow reversal exists.  相似文献   

18.
The present paper reports on a numerical simulation and experimental validation of fluid flow and conjugate heat transfer characteristics of new vascular channels, whose cross-sections are semi-circular. The numerical analysis covers the Reynolds number range of 30−2000, with a cooling channel volume fraction of 0.04, pressure drop range of 30−105 Pa. Six flow configurations were considered: first, second, and third constructal structures with optimized hydraulic diameters and non-optimized hydraulic diameter for each system size 10 × 10, 20 × 20, and 50 × 50, respectively. The numerical results of the proposed vascular channels show that the channel configurations of the optimized constructs show much lower flow resistance and temperature distribution than those of the non-optimized constructs. It is also shown that the power component in the power-law relationship between mass flow rate and pressure drop decreases as the system size and mass flow rates increase. The numerical results are validated by experimental data, and with the two exhibiting excellent agreement in all cases. The validation study against the experimental data shows that the presented numerical model is a reliable tool for predicting the performance of cooling plates under practical operating conditions and for the design of self healing or cooling system.  相似文献   

19.
This paper deals with the double-constraint methodology for calibration of steady-state groundwater flow models. The methodology is based on updating the hydraulic conductivity of the model domain by comparing the results of two forward groundwater flow models: a model in which known fluxes are specified as boundary conditions and a model in which known heads are specified as boundary conditions. A new zone-integrated double-constraint approach is presented by partitioning the model domain in zones with presumed constant hydraulic conductivity (soft data), and the double-constraint methodology is reformulated accordingly. The feasibility of the method is illustrated by a practical case study involving a numerical steady-state groundwater flow model with about 3 million grid blocks, subdivided into four zones corresponding to the major hydrogeological formations. The results of the zone-integrated double-constraint method for estimating the horizontal and vertical hydraulic conductivities of the zones compare favourably with a classical model calibration based on minimisation of the differences between calculated and measured heads, while the double-constraint method proves to be more robust and computationally less cumbersome.  相似文献   

20.
A numerical study is performed on a two-dimensional confined opposed-jet configuration to gain basic understanding of the flow and mixing characteristics of pulsed turbulent opposed-jet streams. The sinusoidal pulsating flows with different temperature are imposed at opposed-jet inlets, which are mixed with each other in a confined flow channel. The current mathematical model taking the effect of temperature-dependent thermo-physical properties of fluid into account can present a good prediction for opposed-jet streams compared with experimental data. The numerical results indicate that introduction of temperature difference between opposed jet flows can lead to an asymmetric flow field immediately after jet impact, and the sinusoidal flow pulsations can effectively enhance mixing rate of opposed jets. Parameter studies are conducted for optimization of pulsed opposed jets. The effect of Reynolds number and flow pulsation as well as the configuration geometry on the mixing performance are discussed in detail. Examination of the flow and thermal field shows that the mixing rate is highly dependent on the vortex-induced mixing and residence time of jet fluid in the exit channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号