首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28 m/s at driving voltages of 80 Vp-p for 44.9 kHz and 48 Vp-p for 22.45 kHz with a pre-load of 3.1 N  相似文献   

2.
王志宏  田晓耕  王三红  姚熹 《物理学报》1998,47(12):2053-2063
针对硬磁盘驱动器中磁头定位两级伺服系统设计了一种新型压电致动器——悬臂梁式变宽度分割电极片状压电致动器.沿厚度方向极化的PZT压电陶瓷薄长片,宽度沿长度方向变化且沿长轴对称,一端固定一端自由构成悬臂梁.其上下两表面的电极均沿长轴分割成对称的两部分.施加电场使其中一半在d31模式作用下伸长,而与其对称的另一半缩短,则压电片沿宽度方向产生弯曲,自由端便可产生致动位移.对该致动器的驱动电压-端部致动位移特性进行了理论分析、有限元模拟及实验验证.致动器中的电场诱导应力远小于陶瓷的抗张强度.致动器端部位移的测试结果略大于理论计算值.与现有磁头悬浮臂尺寸相近的致动器,在20—50V的电压驱动下均可获得1—2μm的致动位移.对25kTPI(track per inch)的高道密度硬磁盘,该位移已能覆盖至少一个磁道宽度,满足磁头定位两级伺服系统对第二级致动器致动位移的基本要求. 关键词:  相似文献   

3.
A piezoelectric bending actuator has been used widely in areas related to precision position controlling, loudspeakers, and pressure sensing. In this paper, a fine focusing actuator is designed using a computer aided design tools, Solid Works 2004, for an optical disk drive pick-up system. The finite element analyses are performed with the software COSMOS Work 2004 and the ANSYS 5.7. The tip displacement of the piezoelectric bending actuator with PMN-PT single crystals is 46 μm at 10 V. It is 15 times larger than tip displacement of PZT ceramics for the same design. The tip displacement obtained from the finite element analyses agrees with the measured data very well.  相似文献   

4.
This paper presents a large displacement, piezoelectric-metal structure actuator, named the piezoelectric drum actuator. The drum actuator consists of a short, thick-walled steel cylinder sandwiched by two thin composite disks, which are fabricated from a brass disk bonded with a piezoceramic disk. The piezoceramic disk, which is polarized in its thickness direction, has a large diameter thickness ratio, producing a large radial displacement under an applied voltage in the thickness, leading to a large transverse deflection of the composite disks in the drum. The drum (outer diameter: 12.0 mm) has a displacement that is about eight times larger than that of a cymbal actuator made with the same ceramic material and comparable dimensions under the same dc driving voltage of 270 V. The drum actuator also showed a large resonance displacement of 56.7 μm under an ac voltage of 90 V. The effective piezoelectric charge coefficient d’33 of the drum is about twice as large as that reported for the cymbal. PACS 77.65 -j; 85.50.+k; 43.38.fx  相似文献   

5.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

6.
Chu X  Ma L  Li L 《Ultrasonics》2006,44(Z1):e561-e564
Micro piezoelectric actuator using vibration mode B(11) (B(mn), where m is the number of nodal circles, n is the nodal diameters) is designed. Different from conventional wobble-type ultrasonic motor using piezoelectric rod or cylinder, piezoelectric disc is used to excite wobble modes and metal cylinder stator is used to amplify the transverse displacement, metal rod rotor is actuated to rotate. The outer diameter of the actuator is 14mm. There are features such as low drive voltage, micromation, and convenient control of wobble state by modifying the structure of stator, etc. Finite element analysis (FEA) of the stator has been made. It is found that the resonant frequency of vibration mode B(11) is 49.03kHz, which is measured at 45.7kHz by the laser vibrometer and impedance analyzer. The rotation speed has been measured, which could be as high as 10,071rpm under an alternating current 100V. Such piezoelectric actuator can be optimized and adjusted to fit practical conditions. It can be applied in the fields of precise instrument, bioengineering and other micro actuator system.  相似文献   

7.
The goal of the present experimental study is to investigate the ability of surface DBD plasma actuators to delay flow separation along the suction side of a NACA0015 airfoil. Three single surface DBD actuators that can operate separately are mounted on the suction side of the profile, at 18%, 27% and 37% of the chord length. The boundary layer is transitioned by a tripper to be sure that the flow control is not due to the laminar-to-turbulent transition. The angle of attack is equal to 11.5° and the free-stream velocity to U0 = 40 m/s, resulting in a chord-based Reynolds number of Rec = 1.33 × 106. The flow is studied with a high-resolution PIV system. In such conditions, the baseline flow separation occurs at 50% of chord. Then, the different single DBD have been switched on separately, in order to investigate the actuator location effect. One highlights that the DBD located at xc/c = 18% is more effective than the two others ones, with a separation delay up to 64% of chord. When the three DBDs operate simultaneously, the separation point moves progressively toward the trailing edge when the high voltage is increased, up to 76% of chord at 20 kV. Finally, the effect of the actuation frequency on the control authority has been investigated, by varying the value of the operating frequency and by burst-modulation. For frequencies equal to 50 Hz and 500 Hz (reduced frequency F+ = 0.31 and 3.1), the separation has been delayed at 76 and 80% of chord, respectively.  相似文献   

8.
用于高功率激光装置的压电步进驱动器   总被引:1,自引:0,他引:1  
根据神光Ⅱ高功率激光装置的具体工程需求,设计了一种以层叠式压电陶瓷为驱动元件的新型压电步进驱动器。驱动器利用杠杆机构实现箝位机构和进给机构交替箝位动子,通过对压电陶瓷小步距的位移连续累加的步进方式,实现大行程直线位移;具有控制简单、行程大、分辨力高及断电箝位的特点。样机试验结果表明,驱动器的运动分辨力达到nm级,步距分辨力达到50nm,行程21mm。  相似文献   

9.
In this work, a novel high-frequency ultrasonic transducer structure is realized by using PMNPT-on-silicon technology and silicon micromachining. To prepare the single crystalline PMNPT-on-silicon wafers, a hybrid processing method involving wafer bonding, mechanical lapping and wet chemical thinning is successfully developed. In the transducer structure, the active element is fixed within the stainless steel needle housing. The measured center frequency and −6 dB bandwidth of the transducer are 35 MHz and 34%, respectively. Owing to the superior electromechanical coupling coefficient (k t ) and high piezoelectric constant (d 33) of PMNPT film, the transducer shows a good energy conversion performance with a very low insertion loss down to 8.3 dB at the center frequency.  相似文献   

10.
本文研究了一种利用一阶纵振动和二阶弯曲振动的弯纵直线超声马达,采用加粗两端金属块的方法达到频率简并。实验测量得出一阶纵振动为36.6kHz,二阶弯曲振动频率为37.3kHz。利用该马达设计研制了一套驱动装置,经实验测得,当马达的预压力14.3N时,该装置无承载且无负载速度大于6cm/s;该装置承载196N的重物且负载l-2kgf时,仍能正常运行。  相似文献   

11.
The study presents the characterization of a novel variable frequency (11–50 kHz) Atmospheric Pressure Plasma Jet (APPJ) source and comparison of the results with 13.56 MHz source, in terms of species generation and species temperature. The behavior of variable frequency APPJ at different frequency regimes was investigated using optical emission spectroscopy to understand the interaction with the ambient environment. The quantitative dependence of the radical generation on driving frequency and time of treatment was also analyzed by direct synthesis of H2O2 by plasma-water interaction. The plasma formed with a kHz driving frequency had a low treatment temperature, which was suitable for biological species, but the plasma generated with a 13.56 MHz driving frequency had a substantially higher radical density than the kHz plasma. As a result, the APPJ device's ability to tune the radical density and treatment temperature with a change in kHz frequency has been demonstrated.  相似文献   

12.
The prospect of using ferromagnetic shape memory alloys (FSMAs) is promising for a resonant actuator that requires large strain output and a drive frequency below 1 kHz. In this investigation, three FSMA actuators, equipped with tetragonal off-stoichiometric Ni2MnGa single crystals, were developed to study their frequency response and resonant characteristics. The first actuator, labeled as A1, was constructed with low-k bias springs and one Ni-Mn-Ga single crystal. The second actuator, labeled as A2, was constructed with high-k bias springs and one Ni-Mn-Ga crystal. The third actuator, labeled as A3, was constructed with high-k bias springs and two Ni-Mn-Ga crystals connected in parallel. The three actuators were magnetically driven over the frequency range of 10 Hz-1 kHz under 2 and 3.5 kOe magnetic-field amplitudes. The field amplitude of 2 kOe is insufficient to generate significant strain output from all three actuators; the maximum magnetic-field-induced strain (MFIS) at resonance is 2%. The resonant MFIS output improves to 5% under 3.5-kOe amplitude. The frequency responses of all three actuators show a strong effect of the spring k constant and the Ni-Mn-Ga modulus stiffness on the resonant frequencies. The resonant frequency of the Ni-Mn-Ga actuator was raised from 450 to 650 Hz by increasing bias spring k constant and/or the number of Ni-Mn-Ga crystals. The higher number of the Ni-Mn-Ga crystals not only increases the magnetic force output but also raises the total stiffness of the actuator resulting in a higher resonant frequency. The effective modulus of the Ni-Mn-Ga is calculated from the measured resonant frequencies using the mass-spring equation; the calculated modulus values for the three actuators fall in the range of 50-60 MPa. The calculated effective modulus appears to be close to the average modulus value between the low twinning modulus and high elastic modulus of the untwined Ni-Mn-Ga crystal.  相似文献   

13.
The sandwich transducer structure is comprised of three components along its main axis: the back metal cap, piezoelectric ceramic stack and the horn. The purpose of this work is to present a simplified method, referred as the equivalent length algorithm, to design the actuator parameters including each segment length and the resonance frequency fs. The actuator length L and the propagation wavelength λ along its main axis satisfy the standing wave theory. So, define an equivalent length coefficient for each part of the actuator, and then the sandwich structure is regarded as a single material cylindrical rod with equivalent length L′. According to the standing wave theory, the equivalent length L′ of the actuator can be determined with the given resonance frequency fs, or vice versa. The phase length of each part of the actuator in the standing wave is optimized freely in the design procedure. The actual length of each part of the actuator is determined by the equivalent length coefficient. Finally, the resonance frequencies of three given actuators are calculated with this method. They are compared with those obtained through Ansys simulation and those measured by an impedance analyzer. The results show agreement.  相似文献   

14.
《Current Applied Physics》2014,14(3):396-402
High performance lead (Pb)-free piezoelectric ceramics with excellent piezoelectric properties is in great demand for sensor and actuator applications. Barium zirconate titanate–barium calcium titanate [xBZT–(1 − x)BCT] (x = 0.5) is one such lead free system, which exhibits high piezoelectric properties similar to lead zirconate titanate (PZT). In this study we report the synthesis and characterization of this lead free [xBZT–(1 − x)BCT] (x = 0.5) via wet chemical sol–gel method. Calcination of the BZT–BCT precursor only at 1000 °C (against 1300 °C reported in the literature) for 4 h resulted in formation of single phase nanoparticles (<50 nm) as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. Highly dense and homogenous microstructure with 95% of the theoretical density was obtained by solid-state sintering of the green pellets at 1550 °C. Remanent polarization (Pr) of 11.55 μC/cm2 and relative permittivity of 20,020 at the Curie temperature of 95 °C were obtained. Electrically poled BZT–BCT ceramics samples exhibited high piezoelectric charge coefficients, d33 ∼ 530 pC/N, d33* ∼ 942 pm/V, large electromechanical coupling coefficient kp ∼ 0.45 and a large strain of 0.15%, which are comparable to those of lead based piezoelectric ceramics. The excellent piezoelectric properties of this sol–gel derived BZT–BCT system has been analyzed and correlated to its structure in this report.  相似文献   

15.
This paper presents a theoretical and experimental study of the in-plane and out-of-plane coupling of a matched piezoelectric sensor/actuator pair bonded on a beam. Both the sensor and actuator are triangularly shaped polyvinylidene fluoride (PVDF) transducers and are intended to provide a compact sensor/actuator system for beam vibration control. The measured sensor-actuator frequency response function has shown an unpredicted increase in magnitude with frequency, which was found, to be due to in-plane vibration coupling. An analytical model has been developed to decompose the sensor-actuator response function into an in-plane contribution and an out-of-plane contribution. This in-plane coupling can limit the feedback control gains when a direct velocity feedback control is applied. A method called the j omega s compensation method is proposed to identify the effect of the in-plane vibration coupling at low frequencies. Even after this compensation, however, there was unexpected strong out-of-plane coupling at even modes, which may have been caused by a lack of accuracy in the shaping of the PVDF sensor and actuator. Numerical simulations have confirmed the sensitivity of the matched sensor/actuator pair with shaping errors.  相似文献   

16.
This paper introduces a novel method for designing the transducer of a highly directional ultrasonic range sensor for detecting obstacles in mobile robot applications. The transducer consists of wave generation, amplification, and radiation sections, and a countermass. The operating principle of this design is based on the parametric array method where the frequency difference between two ultrasonic waves is used to generate a highly directional low-frequency wave with a small aperture. The aim of this study was to design an optimal transducer to generate the two simultaneous longitudinal modes efficiently. We first derived an appropriate mathematical model by combining the continuum model of a bar and countermass with the compatibility condition between a piezoelectric actuator and a linear horn. Then we determined the optimal length of the aluminum horn and the piezoelectric actuator using a finite element method. The proposed sensor exhibited a half-power bandwidth of less than ±1.3° at 44.8 kHz, a much higher directivity than existing conventional ultrasonic range sensors.  相似文献   

17.
The flexural vibration characteristics of a stepped plate, driven at its center by different frequency of longitudinal transducer with a certain area are investigated. The variation in the nodal circle, fundamental frequency and displacement distribution of the stepped plate are calculated by using finite element method (FEM) under different driving frequencies. The results show that the fundamental frequency and nodal circle of the flexural-vibration stepped plate (FVSP) increase with an increase in the driving frequency of the longitudinal vibration ultrasonic transducer (LVUT), before the second-order flexural vibration occurs. When the driving frequency is f = 28 kHz, the displacement amplitude of the stepped plate can achieve the maximum, and the nodal circle radius of the stepped plate is 2.61 cm which fits evenly the edge of stepped profile. Meanwhile, the directivity and radiation efficiency of the FVSP would be greatly improved in a special driving frequency. The conclusions agree with the experimental ones and are significant for both design and applications of the stepped plate.  相似文献   

18.
The authors developed a fast simultaneous method in detecting multi-gases using quantum cascade laser (QCL) based photoacoustic (PA) spectroscopy. We demonstrated the simultaneous measurement of CO and SO2 concentrations using two QCLs working at 4.56 and 7.38 μm, corresponding to the absorption bands of CO and SO2, respectively. The modulation frequencies of the two QCLs were 234 and 244 Hz. The response time was 0.6 seconds. A computer sound card was used to process the PA signals. Fast Fourier transform was an essential step to get the amplitudes of the PA signals at different frequencies. The concentration of each gas can be obtained from the PA signal amplitude at the corresponding modulation frequency.  相似文献   

19.
《Journal of sound and vibration》2004,269(3-5):1031-1062
A high bandwidth powered resonance tube (PRT) actuator potentially useful for noise and flow control applications was developed. High bandwidth allows use of the same actuator at various locations on an aircraft and over a range of flight speeds. The actuator selected for bandwidth enhancement was the PRT actuator, which is an adaptation of the Hartmann whistle. The device is capable of producing high-frequency and high-amplitude pressure and velocity perturbations for active flow control applications. Our detailed experiments aimed at understanding the PRT phenomenon are complemented by an improved analytical model and direct numerical simulations. We provide a detailed characterization of the unsteady pressures in the nearfield of the actuator using phase averaged pressure measurements. The measurements revealed that propagating fluctuations at 9 kHz were biased towards the upstream direction (relative to the supply jet). A complementary computational study validated by our experiments was useful in simulating the details in the region between the supply jet and the resonance tube where it was difficult to gather experimental data. High bandwidth was obtained by varying the depth of the resonance tube that determines the frequency produced by the device. Our actuator could produce frequencies ranging from 1600 to 15,000 Hz at amplitudes as high as 160 dB near the source. The frequency variation with depth is predicted well by the quarter wavelength formula for deep tubes but the formula becomes increasingly inaccurate as the tube depth is decreased. An improved analytical model was developed, in which the compliance and mass of the fluid in the integration slot is incorporated into the prediction of resonance frequencies of the system. Finally a feedback controller that varied both the resonance tube depth and spacing to converge on a desired frequency was developed and demonstrated. We are optimistic that numerous potential applications exist for such high bandwidth high dynamic range actuators.  相似文献   

20.
An inertial actuator (also known as a proof mass actuator) applies forces to a structure by reacting them against an “external” mass. This approach to actuation may provide some practical benefits in the active control of vibration and structure-borne noise: system reliability may be improved by removing the actuator from a structural load path; effective discrete point-force actuation permits ready attachment to curved surfaces, and an inherent passive vibration absorber effect can reduce power requirements.This paper describes a class of recently developed inertial actuators that is based on mechanical amplification of displacements of an active piezoceramic element. Important actuator characteristics include resonance frequencies, clamped force, and the drive voltage to output the force frequency response function.The paper addresses one particular approach to motion amplification, the “dual unimorph,” in detail. A model of actuator dynamic behavior is developed using an assumed-modes method, treating the piezoelectrically induced stresses as external forces. Predicted actuator characteristics agree well with experimental data obtained for a prototype actuator. The validated actuator dynamic model provides a tool for design improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号