首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
马来酸酐接枝热塑性弹性体在PP/PA6共混物中的作用   总被引:10,自引:0,他引:10  
研究了马来酸酐接枝热塑性弹性体 (TPEg )作为增容剂对聚丙烯 (PP) 尼龙 6 (PA6 )共混体系的相容性、相态以及物理力学性能的影响 .研究结果表明TPEg的加入大大改善了PP PA6共混体系的相容性 ,且随TPEg含量的增大分散相粒径明显降低 ,共混物的韧性以及延展性大大提高 ,同时拉伸强度及模量仍保持较好的水平 .TPEg增容的PP PA6共混物的非等温结晶行为的研究表明 ,共混物中PP和PA6的结晶行为不同于各自纯的聚合物 ,PA6作为成核剂使PP的结晶温度提高 ;而PA6由于TPEg的加入 ,出现分级结晶现象 ,一级结晶温度略低于纯PA6的结晶温度 ,且随TPEg含量增大结晶受阻 ,二级结晶温度与PP的接近 .由于PP、PA 6以及TPEg之间存在较强的相互作用 ,三元共混物中PP及PA6的玻璃化转变温度分别较其纯聚合物升高 .基于上述结果 ,提出了本共混体系的结构模型  相似文献   

2.
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290  相似文献   

3.
Polypropylene (PP)/polyamide6 (PA6)/ethylene propylene diene monomer (EPDM) (70/15/15) ternary polymer blends compatibilized with maleic‐anhydride‐grafted EPDM (EPDM‐g‐MA) were prepared by melt blending using a twin‐screw extruder (TSE) in different processing conditions (barrel temperature profile, screw speed, and mixing sequence). The microstructures of prepared ternary blends were studied and compared to the predictions of spreading coefficient, minimum relative interfacial energy (RIE), and dynamic interfacial energy phenomenological models. The observed morphologies were somehow different from the model predictions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight.  相似文献   

5.
The effects of maleated thermoplastic elastomer (TPEg) on morphological development of polypropylene (PP)/polyamide 6 (PA6) blends with a fixed PA6 content (30 wt %) were investigated. For purpose of comparison, nonmaleated thermoplastic elastomer (TPE) was also added to the above binary blends. A comparative study of FTIR spectroscopy in above both ternary blends confirmed the formation of in situ graft copolymer in the PP/PA6/TPEg blend. Dynamic mechanical analysis (DMA) indicated that un‐like TPE, the incorporation of TPEg remarkably affected both intensity and position of loss peaks of blend components. Scanning electron microscopy (SEM) demonstrated that PP/PA6/TPE blends still exhibited poor interfacial adhesion between the dispersed phase and matrix. However, the use of TPEg induced a finer dispersion and promoted interfacial adhesion. Transmission electron microscopy (TEM) for PP/PA6/TPEg blends showed that a core‐shell structure consisting of PA6 particles encapsulated by an interlayer was formed in PP matrix. With the concentration of TPEg increasing, the dispersed core‐shell particles morphology was found to transform from discrete acorn‐type particles to agglomerate with increasing degree of encapsulation. The modified Harkin's equation was applied to illustrate the evolution of morphology with TPEg concentration. “Droplet‐sandwiched experiments” further confirmed the encapsulation morphology in PP/PA6/TPEg blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1050–1061, 2006  相似文献   

6.
The present investigation deals with the mechanical, thermal, and morphological properties of binary nylon 66/maleic anhydride grafted ethylene propylene rubber (EPR‐g‐MA) blends at different dispersed phase (EPR‐g‐MA) concentrations. The effects of EPR‐g‐MA concentration and dispersed particle size on the mechanical properties of the blends were studied. Analysis of the tensile data in terms of various theoretical models revealed the variation of stress concentration effect with blend composition and the improvement of interfacial adhesion between dispersed rubber phase and nylon 66 matrix. The thermal degradation of the blends was analyzed by nonisothermal thermogravimetric analysis (TGA). It was found that the activation energy (Ea) and overall reaction order of thermal degradation decreased with increasing EPR‐g‐MA content. The scanning electron microscopic (SEM) analysis showed a significant decrease in dispersed particle size with increasing EPR‐g‐MA content, which was explained on the basis of the level of chemical interaction (in situ compatibilization) between nylon 66 and EPR‐g‐MA. The surface morphology of the nylon 66/EPR‐g‐MA blends was illustrated by the roughness of atomic force microscopy (AFM) images. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This study investigates the role played by two different interface agents on the basis of atactic polypropylene in the continuous/disperse phase polypropylene/polyamide‐6 (PP/PA6) system. The two agents used were obtained at the authors' laboratories from an atactic polypropylene byproduct derived from industrial polymerization reactors and consist of two grafted polymers containing either succinic anhydride (a‐PP‐SA) or both succinyl‐fluorescein and succinic anhydride grafted groups (a‐PP‐SF/SA). The role of these grafted polymers as compatibilizers in PP/PA6 polymer blends has been confirmed in previous investigations on the basis of their macroscopic behavior. This work investigates the thermal study of these blends where polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Under isothermal conditions, thermal analysis agrees with the changes in the overall system behavior caused by the presence of the interface agents. These aspects were confirmed by polarized light microscopy that showed the morphology of the blends before and after modification with a‐PP‐SA or a‐PP‐SF/SA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1307–1315, 2002  相似文献   

8.
Graft copolymerization of low‐density polyethylene (LDPE) with a maleic anhydride (MAH) was performed using intermeshing corotating twin‐screw extruder in the presence of benzoyl peroxide (BPO). The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were prepared in a corotating twin‐screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microcopy (SEM). The influence of the variation in temperature, BPO and MAH concentration, and temperature on the grafting degree and on the melt viscosity was studied. The grafting degree increased appreciably up to about 0.45 phr and then decreased continuously with an increasing BPO concentration. According to the FTIR analysis, it was found that the amount of grafted MAH on the LDPE chains was ~5.1%. Thermal analysis showed that melting temperature of the graft copolymers decreases with increasing grafting degree. In addition to this, loss modulus (E″) of the copolymers first increased little with increasing grafting and then obviously decreased with increasing grafting degree. Furthermore, the results revealed that the tensile strength of the blends increased linearly with increasing PA6 content. The results of SEM and mechanical test showed that the blends have good interfacial adhesion and good stability of the phase structure, which is reflected in the mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 267–275, 2010  相似文献   

9.
The compatibilization and impact modification of blends of a relatively new engineering plastic polyamide 4.6 (PA 4.6) and a poly(aryl ether sulfone) (PSU) are investigated. PSU-b-PA6 block copolymers, which can be easily synthesized by ring opening polymerization of ϵ-caprolactam in the presence of a commercial PSU, were found to be very efficient emulsifiers for these incompatible blends. Small amounts (1–4%) of copolymer are sufficient to significantly reduce the particle size and to improve the tensile and impact properties. Combinations of the copolymer and an impact modifier (ethylene-propylene rubber grafted with maleic anhydride) are synergistic and high impact PSU/PA 4.6 alloys are obtained in that way.  相似文献   

10.
Blending polytetrafluoroethylene (PTFE) to polyamide‐6 (PA6) with and without maleic anhydride‐grafted polytetrafluoroethylene (PTFE‐g‐MA) was produced in a corotating twin screw extruder, where PTFE acts as the polymer matrix and PA6 as the dispersed phase. The effect of PTFE‐g‐MA on the tensile properties and tribological propertiesof PTFE/PA6 polymer blends is studied. Results show that the structural stability and morphology of the blends were greatly improved by PTFE‐g‐PA6 grafted copolymers, which were formed by the in situ reaction of anhydride groups with the amino end groups of PA6 during reactive extrusion forming an imidic linkage. The presence of PTFE‐g‐PA6 in the PTFE continuous phase improves the interfacial adhesion, as a result of the creation of an interphase that was formed by the interaction between the formed PTFE‐g‐PA6 copolymer in situ and both phases. Compared with thePTFE/PA6 without PTFE‐g‐MA, the PTFE/PA6 with PTFE‐g‐MAhad the lowest friction coefficient and wear under given applied load and reciprocating sliding frequency. The interfacial compatibility of the composite prevented the rubbing‐off of PA6, accordingly improved the friction and wear properties of the composite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, maleic anhydride grafted styrene–ethylene–butadiene–styrene copolymer (SEBS‐g‐MA) and carbon nanotubes (CNTs) were introduced into the immiscible polypropylene/polystyrene (PP/PS) blend. Among the three polymer components, SEBS‐g‐MA has the strongest affinity to CNTs; thus, it exhibits dual effects to adjust the phase morphology of the blends and the dispersion state of CNTs in the blends. The experimental observations obtained from morphology characterizations using scanning electron microscope and transmission electron microscope confirm the selective localization of CNTs at the interface of the immiscible PP/PS blend. As a consequence, largely decreased percolation threshold is achieved when most of CNTs are selectively localized at the interface region between PP and PS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Compounds were prepared with isotactic polypropylene (iPP) matrix and recycled polyamide 66 fibres (PA66), which were obtained as soft waste in industrial production process. Blends with pristine PA66 pellets were prepared as comparison. The blends showed the presence of PA66 particles dispersed in the PP continuous phase. Considering the incompatibility of the two polymers the addition of isotactic polypropylene grafted with maleic anhydride (iPPgMA) as compatibilizer was investigated: the blends were characterized by thermal, mechanical, dynamic-mechanical and morphological analyses. The presence of the compatibilizer significantly influences the morphology of the blends, inducing a finer dispersion and promoting interfacial adhesion. The characterization of pristine and recycled PA66 did not show a meaningful difference in the value of molecular weight, on the other hand marked differences were presented in the flexural moduli of the two materials; analogous differences were exhibited by the blends: compounds prepared with recycled PA66 showed flexural moduli higher than compatibilized blends with pristine PA66.  相似文献   

13.
The morphology and thermal behaviour of polypropylene/polyamide 6 (PP/PA6), polypropylene/copolymer ethylene propylene diene (PP/PEBAX) and polypropylene/rigid polyurethane (PP/PUR) blends compatibilised with polypropylene-graft-maleic anhydride (PP-g-MA) were studied using scanning electron microscopy and thermogravimetric analyses. The study focuses on the influence of different blends obtained by mixing a thermoplastic, thermoplastic elastomer or thermoset with PP, compatibilised with PP-g-MA. The compatibilising effect of PP-g-MA in an immiscible PP/PA6 blend induces a homogeneous dispersion due to interfacial adhesion. For the PP/PEBAX and PP/PUR binary blends studied slight changes in the morphology were observed with a continuous phase but the PEBAX or PUR domains remained in the PP matrix. The deconvolution of the TGA curve permitted an evaluation of the decomposition stage of the undiluted and blend systems. Thermal stability is slightly influenced by the position of the maximum decomposition rate temperature of the first derivative thermogravimetric curve (DTG). However, the DTG curve profile remains consistent. The activation energy of undiluted PP was in the range of 162–169 kJ mol−1 determined by the Ozawa method. The stabilized activation energy value for all blends studied above a 0.4 weight-loss fraction is discussed.  相似文献   

14.
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
A reactive extrusion process was developed to toughen an amorphous copolyester (PETG) of ethylene glycol, terephthalic acid and 1,4‐cyclohexanedimethanol using either a maleic anhydride grafted polyethylene–octene elastomer (POEg), or a maleic anhydride grafted mixture (TPEg) of the polyethylene–octene elastomer and a semicrystalline polyolefin plastic as the impact modifier. TPEg showed an important toughening effect on the PETG. A sharp ductile‐brittle transition was observed when the TPEg content was about 10 wt %. For POEg toughened PETG, the ductile–brittle transition required a higher content in POEg, ∼15 wt %. Evolution of the topography and morphology of the blends and the relationship between impact strength and topography were discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2801–2809, 2000  相似文献   

16.
Graft copolymer and graft terpolymer were prepared by solution grafting of maleic anhydride (MAH) or acrylonitrile (AN) alone and mixture of MAH and AN on to ethylene–propylene–diene terpolymer (EPDM) using benzoyl peroxide (BPO) as an initiator. The resulting EPDM-g-MAH, EPDM-g-AN and EPDM-g-(MAH-co-AN) have been used to obtain a binary blend of Nylon 6/functionalized EPDM and a ternary blend of polyethylene/Nylon 6/functionalized EPDM by melt blending. The effects of the nature and the amount of the grafted species on the phase morphology, crystallization behavior and mechanical properties of the blends were characterized through scanning electron microscopy, optical microscopy, infrared spectroscopy and using a dynamic mechanical analyzer. From the morphological study, it can clearly be seen that the presence of the functionalized EPDMs in these blends resulted in an improvement of the dispersion degree in incompatible polyethylene/Nylon 6 blends.  相似文献   

17.
Polyamide 66 (PA66)/high density polyethylene (HDPE) blends having miscible structure were produced by compatibilization of HDPE grafted with maleic anhydride (HDPE‐g‐MAH). Mechanical and tribological properties of blends in different compositions were tested. It was found that the polymer blends greatly improved the mechanical properties of PA66 and HDPE. Blending HDPE with PA66 significantly decreased the friction coefficient of PA66; the friction coefficients of blends with different compositions were almost the same and approximately equal to that of pure HDPE; the blends with 80 vol % PA66 exhibited the best wear resistance. The transfer films, counterpart surfaces, and wear debris formed during sliding were investigated by Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC) analysis was further carried out on wear debris. These investigations indicated that the thermal control of friction model is applicable to PA66/HDPE blend, that is the friction coefficient of blend is governed by the HDPE component, which possesses a lower softening point relative to the PA66 component in this system. The wear mechanism of PA66/HDPE blend transforms from PA66 to HDPE as the HDPE content increases. PA66, as the component with higher softening point, increases the hardness of blend, enhances the ability of blend to form a transfer film on the counterface, and inhibits the formation of larger belt‐like debris of HDPE, at the same time, the presence of self‐lubricating HDPE in the system decreases the friction coefficient and the frictional heat, all of these factors are favorable for the wear resistance of PA66/HDPE blend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2514–2523, 2005  相似文献   

18.
The morphology of blends of styrenic polymers in a matrix of 75% Nylon-6 prepared in a Brabender Plasti-Corder was examined by scanning electron microscopy. Styrene/acrylonitrile copolymers (SAN) form smaller particles as the AN level increases owing to the corresponding decrease in the SAN–polyamide interfacial tension. Various styrenic polymers containing functional groups, maleic anhydride or oxazoline type, that can react with Nylon-6 during melt processing were added to the SAN phase which also led to a decrease in the particle size owing to the graft copolymer formed in situ. The effects of functional group type, amount of functional groups per chain, amount of functional polymer added, and the miscibility of the styrene/maleic anhydride (SMA) and SAN copolymers on the morphology of the styrenic phase in the Nylon-6 matrix are described. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
含碱性功能基聚合物反应性增容体系的研究胡静,张邦华,宋谋道,周庆业(南开大学高分子化学研究所,天津,300071)关键词聚合物共混,反应性聚合物,碱性功能基,反应性增容通过共混单体方法制备聚合物“合金”是聚合物高性能化、开发材料新品种的主要方法。对于...  相似文献   

20.
By using thermomechanical analysis (TMA) multiple relaxation transitions in the amorphous part of semi-crystalline polymers and their blends can be found. These result from differences in the interaction energies between segments of macromolecules, and as a result, in molecular mobility. TMA shows essential changes in the structure of low-density polyethylene (LDPE) resulting from the grafting of a maleic anhydride (LDPE-g-MAH) onto this semi-crystalline polymer. The grafting process did not suppress the ability of polyethylene to crystallize. Essential changes were found in molecular weight distribution and relaxation transitions of the ternary blends LDPE/PA6 (polyamide 6, PA6)/LDPE-g-MAH studied. For a concentration of PA6 up to 30 wt.%, a single relaxation transition is visible, which testifies that the components are miscible in the amorphous region. For blends with 40 and 50 wt.% of PA6, this structure was transformed and two relaxation transitions are visible. From the results obtained in this study it is concluded that the introduction 5 wt.% of grafted polyethylene is sufficient to produce a PA6/LDPE blend only for PA6 concentration up to 30 wt.% which is homogenous on “molecular” level. The transformation of the structure of the ternary polymer blend was explained by the interaction of the components during the melt mixing and changes in the structure of its amorphous regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号