首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composite Interfaces》2013,20(4-5):435-450
Our exhaustive research on the preparation, characterization, materials properties and biodegradability of polylactide (PLA)/organically modified layered silicate (OMLS) nanocomposites has yielded results for PLA/montmorillonite (MMT) nanocomposites. Natural Na+-MMT modified with octadecylammonium cation, is used as an OMLS for nanocomposites preparation. The internal structure of the nanocomposites at the nanometer scale is established using wide-angle X-ray diffraction (WAXD) patterns and transmission electron micrographic (TEM) observations. All nanocomposites show improved material properties and crystallization behavior with a simultaneous improvement in biodegradability than that of neat PLA.  相似文献   

2.
何学敏  钟伟  都有为 《物理学报》2018,67(22):227501-227501
具有核/壳结构的磁性复合纳米材料是十分重要的功能材料,其综合物性受材料微结构的影响,而这很大程度上又取决于复合体系的可控合成.本文综述了近二十年来有关核/壳磁性复合纳米材料的制备、表征及性能研究方面的进展,讨论的体系主要有:铁氧体基永磁/软磁(反铁磁)复合纳米材料、非磁性体包覆磁性核而成的复合纳米材料、用磁性颗粒催化合成的碳基复合纳米材料、基于交换偏置效应而设计的复合纳米材料、核-壳同轴结构的一维复合纳米材料和核/壳/壳三元结构的磁性复合纳米材料等.构建复合体系的组分包括M型永磁铁氧体、3d过渡金属(及其合金、氧化物、碳化物)、多铁化合物、非磁性体(比如绝缘体、半导体、有机分子)和碳材料等,着重分析了复合纳米材料的热稳定性、光致发光性能、光电催化能力、电化学特性、微波吸收性能、磁电阻效应、永磁体性能、高频软磁特性、交换偏置效应及其相关现象.最后,对核/壳结构磁性复合纳米材料的未来发展趋势进行了展望,并在基础研究和改性应用方面提出了一些建议.  相似文献   

3.
Commercially available CNFs (diameter 30–300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.  相似文献   

4.
Graphene has excellent mechanical, electrical and thermal properties. Recently, graphene-metal composites have been proposed as a means to combine the properties of metals with those of graphene, leading to mechanically, electrically and thermally functional materials. The understanding of metal-graphene nanocomposites is of critical importance in developing next-generation electrical, thermal and energy devices, but we currently lack a fundamental understanding of how their geometry and composition control their thermal properties. Here we report a series of atomistic simulations, aimed at assessing the geometry and temperature effects of the thermal interface conductance for copper- and nickel-graphene nanocomposites. We find that copper-graphene and nickel-graphene nanocomposites have similar thermal interface conductances, but that both cases show a strong performance dependence on the number of graphene layers between metal phases. Single-graphene-layer nanocomposites have the highest thermal interface conductance, approaching ~500 MW m(-2) K(-1). The thermal interface conductance reduces to half this value in metal-bilayer graphene nanocomposites, and for more than three layers of graphene the thermal interface conductances further reduces to ~100 MW m(-2) K(-1) and becomes independent with respect to the number of layers of graphene. This dependence is attributed to the relatively stronger bonding between the metal and graphene layer, and relatively weaker bonding between graphene layers. Our results suggest that designs combining metal with single graphene layers provide the best thermal properties.  相似文献   

5.
In this paper, we present the experimental results on the study of mechanical properties of polymer-based nanocomposite materials with carbon nanotube or ultradisperse diamond inclusions. Tests are performed by nanoindentation methods. The results obtained for nanocomposites and a polymer used as a matrix in nanocomposites are compared.  相似文献   

6.
UV irradiation of materials consisting of a polymer matrix that possesses precursors of noble metals followed by annealing results in creation of metal nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonics applications due to the strong alteration of their optical properties compared to initial nonirradiated materials. We report our results on the synthesis and investigation of two kinds of these materials:
  1. Photoinduced Au nanocomposites based on PMMA matrices, including bulk materials prepared by means of the polymerization technique;
  2. photoinduced Ag nanocomposites with an organic–inorganic hybrid matrix based on TiO2 gels.
The experimental data on evolution of absorption spectra of these materials due to laser irradiation at different wavelengths are presented. The linear and nonlinear refractive index changes in these materials owing to light-induced nanonstructuring are investigated.  相似文献   

7.
吴子华  谢华清*  曾庆峰 《物理学报》2013,62(9):97301-097301
ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率. 关键词: 热电材料 ZnO 纳米复合 热导率  相似文献   

8.
Existing methods for a multiscale simulation of polymer nanocomposites, which are presently thought to be among the most promising materials for applications in various realms of science and technologies, are considered. Factors that affect the structure and properties of polymer nanocomposites are analyzed. These factors include the properties of nanoobjects used as fillers, special features of the interaction between a nanofiller and a host material, and the uniformity of the nanofiller distribution over the polymer volume. It is shown that specific simulation methods are required for properly taking into account each such factor, and an optimum scheme is chosen for a multiscale simulation of polymer nanocomposites. Some results of the calculations performed on the basis of the approach described in this article are presented.  相似文献   

9.
A novel synthesis method is presented for the preparation of nanosized-semiconductor zinc oxide–sulphide (ZnO/ZnS) core–shell nanocomposites, both formed sequentially from a single-source solid precursor. ZnO nanocrystals were synthesized by a simple co-precipitation method and ZnO/ZnS core–shell nanocomposites were successfully fabricated by sulfidation of ZnO nanocrystals via a facile chemical synthesis at room temperature. The as-obtained samples were characterized by X-ray diffraction and transmission electron microscopy. The results showed that the pure ZnO nanocrystals were hexagonal wurtzite crystal structures and the ZnS nanoparticles were sphalerite structure with the size of about 10 nm grown on the surface of the ZnO nanocrystals. Optical properties measured reveal that ZnO/ZnS core–shell nanocomposites have integrated the photoluminescent effect of ZnO and ZnS. Based on the results of the experiments, a possible formation mechanism of ZnO/ZnS core–shell nanocomposites was also suggested. This treatment is suggested to improve various properties of optoelectronically valuable ZnO/ZnS nanocomposites. These nanosized semiconductor nanocomposites can form a new class of luminescent materials for various applications.  相似文献   

10.
Different organophilic layered silicates and a modified hydrotalcite were used as functional nanofillers for thermoplastic and thermosetting polymers. Polyamide 6 (PA6) and poly(butylene terephthalate) silicate nanocomposites were prepared by melt compounding using a twin‐screw extruder. The morphology of the materials was investigated by transmission electron microscopy and small‐angle X‐ray scattering, and was found to be characterized by homogeneous dispersion of high aspect ratio silicate layers in the polymer matrix. The PA6 nanocomposite displayed excellent thermo‐mechanical properties at low filler loadings and improved barrier properties. Epoxy nanocomposites have also been prepared and characterized with regard to their morphology and their water vapor permeability.  相似文献   

11.
A number of the main mechanical characteristics (yield strength, impact toughness, microhardness) of particulate-filled polymer nanocomposites are quantitatively described using fractal analysis. The approach is used to study the main mechanical behavior features of these materials. The influence of the initial particle size of nanofiller and the degree of particle aggregation on the mechanical properties of nanocomposites is shown.  相似文献   

12.
Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH2)2) and thioacetamide (C2H5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.  相似文献   

13.
《Composite Interfaces》2013,20(2-3):143-158
Poly(lactic acid) (PLA)/layered silicate nanocomposites have successfully been prepared using the solution route. Two types of organically modified nanoclays, namely, MEE and MAE have been used. The nanostructure, as observed from wide angle X-ray diffraction, indicates an intercalated hybrid for both PLA–MEE and PLA–MAE, and depends on the type of organic modifier used. Intercalation is higher in PLA–MEE as compared to PLA–MAE system. Crystallite dimensions of nanoclays and nanocomposites have been calculated from the Scherrer equation. Crystallite size of nanocomposites is higher than that of pure nanoclay, which in turn affects the properties of the nanocomposites. Wide angle X-ray diffraction patterns also suggest that PLA and its nanocomposites are predominantly amorphous before annealing but, after annealing, PLA and its nanocomposites are fairly crystalline. The crystallinity of the nanocomposites has decreased in comparison to neat polymer suggesting some sort of interaction between organically modified nanoclay and polymer. The nanohybrids show significant improvement in the thermal properties of the matrix as compared to pristine polymer. The nature of interaction between nanoparticles and polymer is higher in PLA–MEE against PLA–MAE, as evident from the lower value of the heat of fusion in the case of PLA–MEE. The nanoparticles act as nucleating agent, and thereby, control the spherulite dimension of the matrix. The comparison of biodegradation of PLA and its nanocomposites has been studied in several media. Biodegradability of PLA has significantly been enhanced in the presence of nanoclays which has been explained on the basis of amorphous content in the polymer matrix. Finally, the regulated biodegradation has been discussed.  相似文献   

14.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

15.
Stimuli-responsive hydrogel nanocomposites comprised of swollen polymer networks, in which magnetic nanoparticles are embedded, are a relatively new class of “smart” soft materials presenting a significant impact on various technological and biomedical applications. A novel approach for the fabrication of hydrogel nanocomposites exhibiting temperature- and magneto-responsive behavior involves the random copolymerization of hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive) and 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) in the presence of preformed oleic-acid-coated magnetite nanoparticles (OA·Fe3O4). In total, two series of hydrogel nanocomposites have been prepared in two different solvent systems: ethyl acetate (series A) and tetrahydrofuran (series B). The degrees of swelling (DSs) of all conetworks were determined in organic and in aqueous media. The nanocrystalline phase adopted by the embedded magnetic nanoparticles was investigated by X-ray diffraction (XRD) spectroscopy. The obtained diffraction patterns indicated the presence of magnetite (Fe3O4). Deswelling kinetic studies that were carried out at ∼60 °C in water demonstrated the thermoresponsive properties of the hydrogel nanocomposites, attributed to the presence of the hexaethylene glycol side chains within the conetworks. Moreover, thermal gravimetric analysis (TGA) measurements showed that these materials exhibited superior thermal stability compared to the pristine hydrogels. Further to the characterization of compositional and thermal properties, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior exhibited by these materials depending on the amount of magnetic nanoparticles incorporated within the networks combined with their thermoresponsive properties may allow for their future exploitation in the biomedical field.  相似文献   

16.
Filling poly(vinyl alcohol) (PVA) with clay, typically montmorillonite (MMT), has been proven to be an attractive option to meet the high-performance requirements of PVA-based materials. In previous reports MMT or organophilic MMT (OMMT) were directly used as fillers. As a result, both exfoliated and intercalated MMT structures coexisted in the resultant nanocomposites. However, there is still a large gap between these nanocomposites and ideally designed ones where individual clay nanolayers (CNLs) are expected to be uniformly dispersed in the PVA. With this in mind, an ameliorative solution casting process is proposed here to prepare PVA nanocomposites. For this purpose the CNLs were prepared ahead of time by exfoliation of MMT in water and then used as fillers. Assessment of the dispersion state of the CNLs in PVA revealed that they (≤5.0 wt%) were randomly and uniformly dispersed (down to the level of individual silicate layers) in and formed strong interfacial interactions with the PVA. This resulted in significantly enhanced physical properties of the resultant nanocomposites relative to neat PVA. In particular, a 104.7% increment in the yield stress was achieved with 5.0 wt% CNLs, much larger than the 15–70% increments of previous PVA nanocomposites using MMT or OMMT as fillers. Additionally, excellent optical clarity of the PVA was obtained for the nanocomposites.  相似文献   

17.
《Composite Interfaces》2013,20(1):33-45
Polymer nanocomposites with carbon nanotubes (CNT) are becoming important structural materials because of their superior mechanical properties and easy processability. The objective of the work is to investigate the influence of small amounts of single walled carbon nanotubes (SWCNT), as well as multi-walled carbon nanotubes (MWCNT), on the microhardness of a thermoplastic polymer such as poly(butylene terephthalate) (PBT). The nanocomposites were obtained by introducing the CNT into the reaction mixture during the synthesis of PBT. The polymers without carbon nanotubes (reference material) and with carbon nanotubes were synthesized using an in-situ polycondensation reaction process. Weight percentages ranging from 0.01 to 0.2 wt% of the single walled and from 0.01 to 0.35 wt% of the multi-walled nanotubes were dispersed in 1,4-butanediol (BD) by ultrasonication and by ultra high speed stirring. The nanocomposites were extruded followed by injection molding. The samples were characterized by electron microscopy and microindentation hardness techniques. The variations of the micromechanical properties (indentation hardness) of the nanocomposites with nanotube content and with temperature are discussed in the light of the stress transfer between the polymer matrix and nanotubes, the degree of dispersion, the nature of the tubes and other structural parameters.  相似文献   

18.
通过静电纺丝制备聚丙烯腈(PAN)纳米纤维毡,采用水热法在二乙烯三胺和去离子水的混合溶剂中于180℃下制备ZnSe/聚丙烯腈纤维纳米毡复合材料。使用扫描电镜(SEM)、X射线衍射(XRD)、荧光光谱等分析方法对ZnSe/聚丙烯腈复合材料进行表征。结果表明,ZnSe/聚丙烯腈复合材料的形貌较复杂,既有直径10~100 nm,长度50~500 nm的纳米捧,也存在4~10μm左右的ZnSe微米花。260 nm波长光激发下ZnSe/聚丙烯腈复合材料的发射光谱包括位于351 nm(3.55 eV)的弱近紫外激子峰和位于427 nm(2.91 eV)的宽谱带缺陷发光峰,二者相对于ZnSe晶体的本征发射带468 nm均有明显的蓝移效应。  相似文献   

19.
张晓凡  刘丽炜  邹鹏  胡思怡  王玥  张喜和 《发光学报》2015,36(10):1118-1125
选用天然多糖中唯一的碱性多糖——壳聚糖作为稳定剂和包裹剂,成功合成了水溶性的Ag In S2量子点/低分子量壳聚糖纳米复合材料(Ag In S2/LCSMS)。利用透射电子显微镜(TEM)、FT-IR傅里叶红外光谱仪、紫外吸收光谱、荧光分光光度计等表征手段对纳米复合材料的形貌、化学组成及光学性质进行了研究。结果表明,Ag In S2/LCSMS纳米复合材料的粒径约为5~6 nm,在水相中仍具有较稳定的发光。之后,对Ag In S2/LCSMS纳米复合材料的生物相容性进行了研究,对比Ag In S2/LCSMS纳米复合材料与Ag In S2量子点的细胞活性测试结果发现,Ag In S2/LCSMS纳米复合材料的细胞活性比Ag In S2量子点有了明显的提高,说明通过低分子量壳聚糖的包裹可以明显提高纳米材料的生物相容性。因此,这类具有较好水溶性和生物相容性的荧光Ag In S2/LCSMS纳米复合材料可作为优良的生物荧光标记材料在生物医学检验、细胞以及活体成像研究中有广泛的应用前景。  相似文献   

20.
《Composite Interfaces》2013,20(6):487-506
Layered aligned dispersion of graphene in graphene/polyvinyl alcohol (PVA) nanocomposites is prepared in the form of films through simple solution processing route. The results indicate that there exist an interfacial interaction between PVA and graphene because of hydrogen bonding. This is responsible for the change in structure of PVA (such as decrease in the level of crystallization) and exhibiting ductile PVA nanocomposite film with improved tensile modulus, tensile strength, and thermal stability. Moreover, to improve the mechanical properties of PVA nanocomposites, graphene is successfully modified using a non-covalent modifier, sodium alginate (SA) and there exist an ‘anion-π’ type of interaction in between SA and graphene. The modification results in finer dispersion of the graphene in PVA/SA-m-graphene nanocomposites. In addition, there exist a hydrogen bonding in between PVA and SA. This has resulted in the remarkable improvement in mechanical properties of PVA/SA-m-graphene nanocomposites as compared to pure PVA and PVA/graphene nanocomposites. The increase in mechanical properties of PVA/SA-m-graphene nanocomposites is achieved through better load transfer from graphene to polymer matrix, despite decrease in crystallinity of PVA. Improvement in tensile modulus and tensile strength is highest at 0.5 wt.% of SA-modified graphene in PVA/SA-m-graphene nanocomposites because of finer dispersion of graphene and is 62 and 40% higher than that of pure PVA. Addition of SA-modified graphene also improves the thermal stability of PVA/SA-m-graphene nanocomposites remarkably as compared to unmodified graphene PVA nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号