首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

2.
《Composite Interfaces》2013,20(8):553-573
Jute fiber-reinforced chemically functionalized polyethylene high density (JF/CF-HDPE) composites have been processed, by Palsule process without using any compatibilizer and without any fiber modification, by using chemically functionalized maleic anhydride grafted polyethylene (MAPE) as matrix, in place of polyethylene. Fiber/matrix interfacial adhesion generated in situ, due to interactions between jute fiber and the maleic anhydride of the CF-HDPE matrix, has been established by Fourier transform infrared spectroscopy and scanning electron microscope micrographs. Mechanical properties of the JF/CF-HDPE composites developed with in situ fiber/matrix interfacial adhesion in this study have been found to be higher than those of the CF-HDPE matrix and increase with increasing amounts of jute fibers in the JF/CF-HDPE composites, and are better than properties of literature reported and laboratory processed jute fiber/polyethylene composites with and without MAPE compatibilizer. Measured tensile modulus of JF/CF-HDPE composites compares well with values predicted by rule of mixtures, inverse rule of mixture, Hrisch Model, Halpin-Tsai equations, Nielsen equations, and with Palsule equation. The feasibility of developing natural fiber/maleic anhydride grafted polyolefin composites by Palsule process without using any compatibilizer and without any fiber treatment is demonstrated.  相似文献   

3.
《Composite Interfaces》2013,20(2-3):319-341
The morphology and mechanical properties of reconstituted wood board waste-polyethylene composites were studied using virgin polyethylene (PE) and 2 wt% maleic anhydride (MA) modified polyethylene (MAPE) as matrices. Although the wood waste (WW) and PE are not compatible with each other, dynamic mechanical analyses (DMA) show considerable shifting in the α-transition temperature and crystallisation temperature (T c) of PE in the unmodified composites, indicating physical interaction between PE and WW. The increase in crystallinity with increasing WW content up to 50 wt% indicates that WW is a potential nucleating agent for PE. However, the tensile strength of the unmodified composites gradually decreases with WW content, indicating that the improvement in interface adhesion is essential for WW to be used as reinforcing fillers. Fourier transform infrared spectroscopic (FTIR) results indicate that MAPE interacts with WW through esterification and hydrogen bonding to form good adhesion between the two phases. Inward shifting in glass transition temperature (T g) for the MAPE-based composites containing less than 60 wt% WW indicates that WW and MAPE are partially compatible with each other. SEM micrographs of MAPE-based composites provide further evidence for this mechanism. The tensile strength of the MAPE-based composites is clearly higher than that of the virgin PE-based composites.  相似文献   

4.
High‐density polyethylene (HDPE) and maleic anhydride grafted HDPE (HDPE‐g‐MA) were selected as lubricant and compatibilizer, respectively, for improving the tribological and mechanical properties of polycarbonate (PC). The morphology of worn surfaces and debris was observed by means of scanning electron microscopy (SEM). The mated steel ring surface was analyzed by using SEM combined with energy dispersive spectroscopy (EDS). Both HDPE and HDPE‐g‐MA reduced the friction and wear of pure PC. HDPE‐g‐MA, which had a better compatibility with PC than HDPE, resulted in better improvement of the mechanical and tribological properties of the PC matrix. A 10 vol. % HDPE‐g‐MA reduced the wear of pure PC by 4 orders of magnitude, and the friction coefficient was reduced from 0.86 to 0.22. Such improvements in the tribological behavior resulted from the good self lubrication of HDPE and HDPE‐g‐MA. The PC/HDPE‐g‐MA (S90‐0‐10) polyblend also showed higher notched impact strength than pure PC. It may be a useful material for application in tribological fields.  相似文献   

5.
《Composite Interfaces》2013,20(5):309-329
Chemically functionalized maleic anhydride (MAH)-grafted polypropylene matrix has been used (in place of polypropylene as matrix with compatibilizer) to process banana fiber/chemically functionalized polypropylene (BF/CFPP) composites, without using any compatibilizer and without any fiber modification by Palsule process. Fiber/matrix interfacial adhesion generated, in-situ, due to interactions between BF and the MAH of the CFPP matrix has been established by Fourier transform infrared spectroscopy and scanning electron microscopy. Mechanical properties of the BF/CFPP composites developed by Palsule process with in-situ fiber/matrix interfacial adhesion in this study have been found to be higher than those of the matrix and it increases with increasing amounts of fibers in composites, and are better than properties of literature reported BF/polypropylene composites processed with compatibilizers. Measured modulus of BF/CFPP composites compares well with values predicted by rule of mixtures, Hrisch model, Halpin-Tsai equations and its modified Nielsen version, and with Palsule equation. The feasibility of developing natural fiber/MAH grafted polyolefin composites by Palsule process without using any compatibilizer and without any fiber treatment is demonstrated.  相似文献   

6.
In this paper, the effect of nanocomposite compatibilizer type on the interfacial adhesion and mechanical properties of new class of polyethylene (PE) homocomposites, comprising PE/clay nanocomposites as matrix and ultra high molecular weight polyethylene (UHMWPE) fibers as reinforcement, was investigated. These were manufactured by a combination of powder impregnation and film stacking methods, introduced in previous research. Three types of high-density polyethylene (HDPE) Nanocomposites were prepared based on the various compatibilizers used: (i) nanocomposites containing HDPE-grafted maleic anhydride (HDPE-g-MA) as compatibilizer of clay and HDPE matrix, (ii) linear low-density polyethylene-grafted maleic anhydride (LLDPE-g-MA) used as compatibilizer, and (iii) nanocomposites without any compatibilizer. The effects of the presence and compatibilizer type on the quality of clay dispersion, and also the interface features of HDPE-nanocomposite and UHMWPE fibers were investigated and compared with each other. The results demonstrated that the kind of compatibilizer was an important factor determining the dispersion state of clay platelets, and influenced the UHMWPE fiber–PE matrix interface adhesion and the mechanical properties of the PE nano-homocomposites.  相似文献   

7.
High-density polyethylene/organoclay nanocomposites were prepared via melt intercalation in an internal mixer using both a direct mixing and master batching method. Two types of maleic anhydride grafted polyethylene, high-density polyethylene grafted maleic anhydride, and linear low-density polyethylene grafted maleic anhydride, (HDPE-g-MA, LLDPE-g-MA) were used as compatibilizers to enhance the dispersibility of nanoclay in HDPE. Dispersion of organoclay in the nanocomposites was characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheological mechanical spectroscopy (RMS). Effects of clay content and degree of clay dispersion on the rheological and tensile properties were also investigated. Furthermore, the effect of order of mixing on the dispersion and distribution of the clay layers was studied. The obtained results showed that organoclay in the nanocomposites were dispersed homogeneously and exfoliated better when HDPE-g-MA and the direct mixing route were used. Although in the master batching method clay intercalated better, clay layers chiefly remain in compatibilizer rich areas. On the other hand, direct mixing was observed to lead to clay particles being dispersed in the HDPE matrix or at the interface of the matrix and compatibilizer and, consequently, better improvement in the tensile modulus was achieved. It was determined that the compatibilizer with the higher miscibility with the matrix was the key factor for achieving better exfoliation of clay sheets.  相似文献   

8.
A novel method to prepare maleic anhydride grafting onto poly (propylene) (PP-g-MAH) was described. It was performed by γ-irradiation in solid state via ultrafine blend in the absence of any initiator and the grafting mechanism was proposed based on the experimental results. First, ultrafine blend of MAH and PP was prepared through ultrasonic initiation in melt state and then cooled rapidly. Second, the blend was radiated by γ-irradiation in the circumstance of atmosphere. Effects of irradiation dose and MAH concentration on the amount of grafted MAH were investigated. Compared with the conventional solid-state radiation grafting method, PP-g-MAH obtained via this method shows a higher graft rate of MAH. This novel method also has the advantages of solventless, energy efficient, low cost and simple operation. Furthermore, it is very easy to get purified products. The molecular structures of grafted copolymer were characterized by Fourier-transform infrared spectroscopy. Differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscope were used to determine the degree of crystallinity and crystalline structure.  相似文献   

9.
The aim of this article was to show the effects of an electron radiation dose and presence of a compatibilizer on the oxidation of composites made of blends of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and poly(ethylene terephthalate) (PET) as well as of blends of LDPE, HDPE, and PP. As the compatibilizers, the styrene-ethylene/butylene-styrene elastomer grafted with maleic anhydride (SEBS-g-MA) and trimethylol propane trimethylacrylate (TMPTA) were used; they were added in the amounts of 5, 10, and 15 wt% and 1, 2, and 3 wt%, respectively. The oxidation of the surface layer (SL) was investigated by the X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). It was found that the extent of the composite oxidation increased with the increasing dose of the electron radiation. The addition of the compatibilizers enhanced the oxidation of the SL but hindered the oxidation of the bulk of the material.  相似文献   

10.
Maleated poly(ethylene-octene) (POE-g-MAH), as a compatilizer and toughener, was incorporated in polypropylene/hollow glass microspheres (PP/HGM) binary composites, and the phase structure and thermal and mechanical properties of these composites were investigated. Scanning electron microscopy analysis indicated that the phase structure of ternary composites could be controlled by POE-g-MAH and the surface treatment of HGM. Fourier transform infrared spectroscopy revealed that there was an amidation reaction between the treated HGM and POE-g-MAH during melt compounding. Differential scanning calorimetry suggested that the crystallization and melting behaviors of ternary composites were influenced by phase structure. Evaluation of mechanical properties showed that the amide linkage between the treated HGM and POE-g-MAH was favorable for improving the properties of ternary composites.  相似文献   

11.
High-density polyethylene (HDPE) composites reinforced with multiwalled carbon nanotubes (MWCNTs) and nano-silicon dioxide (SiO2) fillers were evaluated for flame retardancy and thermal properties for cable and wire applications. In this study, the filler percentages of MWCNT and nano-SiO2 have varied from 0 to 5 wt% in HDPE composite with polyethylene-grafted glycidyl methacrylate compatibilizer and 3-aminopropyl triethoxy silane coupling agent. Addition of MWCNT’s and nano-SiO2 to the HDPE composite is observed to enhance the limiting oxygen index and char formation. Cone calorimeter results also show a 53% reduction in the peak heat release rate of the HDPE composite with 5 wt% of MWCNT. The existence of synergism between the uniformly dispersed MWCNT and nano-SiO2 has been verified using Finite Element Method (FEM)-based thermal simulations.  相似文献   

12.
The effect of compatibilizer types and concentrations on the mechanical properties and morphology of Pithecellobium Clypearia Benth Fiber (PCBF)/recycled ABS composites prepared by a vane extruder were characterized. In addition, the percentage of compatibilizer was fixed at 8%, and the effect of lubricant concentrations on the mechanical properties and torque behaviors of the composites was also studied. Maleic anhydride grafted ABS (ABS-g-MAH) and maleic anhydride grafted PS (PS-g-MAH) were used as compatibilizers; the lubricant used was Struktol TPW 604 (blend of aliphatic carboxylic acid salts and mono diamides). The composite with 8% ABS-g-MAH showed superior mechanical properties compared to the composite without compatibilizer and the 8% PS-g-MAH compatibilized composites. Compared with PS-g-MAH, ABS-g-MAH was more effective for the composites to improve the interfacial interaction and mechanical properties. The comprehensive mechanical properties of PCBF/recycled ABS composite filled with 4% lubricant were better than the composites without lubricant and the composites with any other content of TPW 604. Moreover, the torque of the composites in an internal mixer decreased with an increasing lubricant content.  相似文献   

13.
The effect of compatibilization on the adhesion, fracture toughness, morphology, and mechanical properties of isotactic polypropylene (PP)/polyamide 6 (PA) blends was investigated. Maleic anhydride (MAH) functionalized poly-(ethylene-co-vinyl acetate) (EVA-g-MAH) and nonreactive EVA copolymer were used as compatibilizers in binary blends. An attempt of in situ compatibilization via addition of pure maleic anhydride to PA/EVA/PP melt was also made. The blends containing maleated EVA copolymer showed more regular and finer dispersion of phases, better adhesion at the interface, and improved mechanical properties.  相似文献   

14.
In this study HCl generation of polyvinyl (chloride) (PVC)/SiO2 composites during its combustion was investigated. SiO2 with different particle sizes were used as HCl absorbers and their HCl uptake ability results were compared to that of CaCO3. It was found that the amount of released HCl gas during PVC combustion decreased in the presence of SiO2. The HCl uptake ability of SiO2 improved with decreasing of its particle size. Although thermogravimetric analysis (TGA) results showed that SiO2 particles decreased the first thermal degradation temperature (T onset) of PVC by initiating dehydrochlorination of PVC at lower temperatures, SiO2 particles had more effective HCl uptaking ability than that of CaCO3. Scanning electron microscopy (SEM) micrographs showed that some aggregates whose size was less than 100 nm were formed when Si-25 nm was used as filler. When SiO2 with micron size was added to PVC as filler, more uniform and better distribution of the SiO2 on the surface was observed.  相似文献   

15.
The radiation induced graft polymerization is a well-known method to obtain new materials. Until recently, only conventional radiation sources, such as Co-60 and electron beams, were used. Moreover, part of the damage induced in polymers by heavy ions can produce active sites (peroxides and hydroperoxides) that are useful to initiate grafting reactions. Maleic anhydride (MAH) was grafted onto polypropylene (PP) wax with a number-average molecular weight (Mn) of 8000 by gamma pre-irradiation technique. Effects of total dose, monomer concentration, reaction time, and temperature on percentage of grafting are studied in detail. It is shown that the optimum conditions for grafting are temperature of 70 °C and total dose of 14.4 kGy. PP-g-MAH is characterized by infrared spectrum. Differential scanning calorimetry shows that the compatibility of PP-g-MAH is better than that of PP.  相似文献   

16.
The isothermal crystallization behavior and crystal structure of the polypropylene (PP) component in wood plastic composites (WPC) with respect to wood particle content and maleic anhydride-grafted polypropylene (MAHPP) compatibilizer were studied by means of polarized optical microscopy, scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. It was found that under the experimental conditions of this research, the speed of crystallization of PP was faster in WPC with MAHPP than in composites without MAHPP. This is ascribed to the difference in undercooling due to the change in the equilibrium melting temperatures (T 0 m ) of the PP component in WPC due to the addition of wood flour and MAHPP compatibilizer. T 0 m decreased with the increase of wood particle content, and it decreased more severely with the addition of wood flour than the addition of compatibilizer. The half-crystallization time was the smallest in PP/wood composites, intermediate in PP/wood/compatibilizer system, and the largest in pure PP under the same undercooling. The fast crystallization in PP/wood composites is ascribed to the heterogeneous nucleation effects of wood particles, which could be hindered by the MAHPP compatibilizers; this was verified by the higher fold surface free energy in WPC with compatibilizer than in WPC without compatibilizer.  相似文献   

17.
Long glass fiber (LGF)-reinforced polypropylene (PP) was prepared using a self-designed impregnation device. The effect of dicumyl peroxide (DCP) and maleic anhydride (MA) content on the compatibilizer, PP grafted with maleic anhydride (PP-g-MA), was investigated by means of scanning electron microscopy (SEM) and mechanical properties. The experimental results demonstrated that the increase of DCP and MA could effectively improve the interfacial interaction between PP and GF. Good interfacial adhesion between PP and GF in PP/ PP-g-MA /LGF composites was observed from SEM studies for the higher contents of MA. The best mechanical properties of PP/ PP-g-MA /LGF(30%) composites were obtained when the content of DCP and MA were 0.4 and 0.8 wt%, respectively. The storage modulus of the PP/PP-g-MA/LGF composites increased and then decreased with the content of MA. When the content of MA was 0.8 wt%, tan δ had the lowest value, indicating that the corresponding composites had the best compatibility.  相似文献   

18.
《Composite Interfaces》2013,20(3):271-276
HEC-g-AA/SiO2 hybrid materials are prepared through a graft copolymerization reaction between acrylic acid (AA) monomer and hydroxyethyl cellulose (HEC), in the presence of a silica sol. The microstructure and properties of the hybrid materials are characterized by Fourier transform infrared spectra (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The results show that a rigid inorganic phase SiO2 is dispersed in flexible organic continuous phase uniformly. HEC-g-AA/SiO2 hybrid material has no obvious phase separation in the presence of the crosslinking agent. The thermal performances of HEC-g-AA/SiO2 are excellent, and the glass transition temperature (T g) increases with the increased amount of the crosslinking agent.  相似文献   

19.
Polyvinylbenzene (PVB, namely polystyrene, PSt) was grafted on the surface of silica gel particles by “grafting from” in solution polymerization system, and grafting particles PVB/SiO2 were obtained. The chloromethylation reaction of the grafted polyvinylbenzene was performed using a novel chloromethylation reagent, 1,4-bis (chloromethyoxy) butane that is un-carcinogenic, and grafting particles CMPVB/SiO2 were obtained. Subsequently, chloromethyl groups on grafting particles CMPVB/SiO2 were hydrolyzed and oxidized, and finally adsorption material polyvinylbenzyl acid/SiO2 (PVBA/SiO2) was prepared. The adsorption performances and mechanism of 2,4,6-trinitrotoluene (TNT) on PVBA/SiO2 were investigated through static methods. The experimental results showed that PVBA/SiO2 possessed strong adsorption ability for TNT with adsorption amount of 26.84 mg g−1. The empirical Freundlich isotherm was also found to agree well with the equilibrium adsorption data. In addition, pH was found to have great influence on the adsorption amount. Finally, PVBA/SiO2 was observed to possess excellent reusability as well.  相似文献   

20.
Using the characteristics of silica sol dispersing well in water and easy formation of silica gel when the silica sol is heated, by mixing a system of concentrated natural rubber latex and silica sol, the silica sol can in-situ generate SiO2 particles when heated. After coagulation of the mixed system, natural rubber/nanosilica composites C(NR/nSiO2) were obtained. The composites C(NR/nSiO2) and their vulcanizates were studied using a rubber processing analyzer (RPA), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The influence of silica contents on the C(NR/nSiO2) vulcanizates mechanical properties, cross-linking degree, Payne effect, dissipation factor (tanδ), and the particle size and dispersion of SiO2 in NR were investigated. The results obtained were compared with the NR/SiO2 composites based on traditional dry mixing of bale natural rubber and precipitated silica (white carbon black). The results showed that when using a sulfur curing system with a silica coupling agent (Si69) in C(NR/nSiO2), the vulcanizate had better mechanical properties, higher wet resistance, and lower rolling resistance than those without Si69. In the composites C(NR/nSiO2) and their vulcanizates, the SiO2 particles’ average grain diameter was 60 nm, and the good-dispersion of the in-situ generated SiO2 in the rubber matrix were a significant contribution to the satisfactory properties of C(NR/nSiO2) composites and their vulcanizates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号