首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Maleated poly(ethylene-octene) (POE-g-MAH), as a compatilizer and toughener, was incorporated in polypropylene/hollow glass microspheres (PP/HGM) binary composites, and the phase structure and thermal and mechanical properties of these composites were investigated. Scanning electron microscopy analysis indicated that the phase structure of ternary composites could be controlled by POE-g-MAH and the surface treatment of HGM. Fourier transform infrared spectroscopy revealed that there was an amidation reaction between the treated HGM and POE-g-MAH during melt compounding. Differential scanning calorimetry suggested that the crystallization and melting behaviors of ternary composites were influenced by phase structure. Evaluation of mechanical properties showed that the amide linkage between the treated HGM and POE-g-MAH was favorable for improving the properties of ternary composites.  相似文献   

2.
A sandbag microstructure was constructed in polyamide 6 (PA6)/ethylene– propylene–diene terpolymer (EPDM)/nanometer calcium carbonate (nano-CaCO3) ternary composites by the addition of maleinated EPDM (EPDM-g-MA) to reduce the interfacial tension between EPDM and PA6 and EPDM and nano-CaCO3. Scanning electron microscopy observation and differential scanning calorimetry analysis revealed that the microstructure of the ternary composites evolved from the initially separated EPDM and nano-CaCO3 dispersion structure to the sandbag structure and finally to the separated dispersion structure again with the increase of EPDM-g-MA content in the elastomer phase. The mechanical results showed the composites with the sandbag microstructure exhibited excellent toughness and stiffness.  相似文献   

3.
Ternary composites composed of polyamide 6 (PA6), a mixture of maleated (EPDM-g-MA) with unmaleated ethylene propylene diene terpolymer (EPDM) rubber at weight ratio 80/20 (defined as EPDM-M), and nano-calcium carbonate (nano-CaCO3) were prepared by a two-step compounding route. Sandbag microstructure, in which nano-CaCO3 agglomerates were embedded EPDM-M, were observed by scanning electron microscopy (SEM). Deformation of the composites was studied by video-aided tensile tests during uniaxial tension. The microstructural morphology and interfacial interaction were investigated through SEM and dynamic mechanical analysis (DMA). Compared to PA6/EPDM-M/nano-CaCO3 ternary composites without sandbag microstructure (E2), the microstructural morphology of PA6/EPDM-M/nano-CaCO3 ternary composites with sandbag microstructure (E3) showed that numerous microfibrils and cavitations were formed by simultaneously stretching and debonding of nano-CaCO3 agglomerates and EPDM-M in the sandbag microstructure, which resulted in a higher volume strain and larger quantity of energy dissipation. Additionally, better interfacial interaction between the sandbag microstructure and PA6 matrix in E3 caused a lower α-relaxation temperature and easier external energy transmission than E2 without sandbag microstructure. Consequently, the presence of the sandbag particles in PA6/EPDM-M/nano-CaCO3 ternary composites changed the tensile yield deformation of PA6 from a more deviatoric plasticity to a more dilatational plasticity.  相似文献   

4.
A sandbag microstructure was constructed in Polyamide 6(PA6)/ethylene-propylene-diene terpolymer (EPDM)/nanometer calcium carbonate (nano-CaCO3) ternary composites by the addition of maleinated EPDM (EPDM-g-MA) to reduce the interfacial tension between EPDM and PA6 and EPDM and nano-CaCO3. Scanning electron microscopy (SEM) observation and differential scanning calorimetry (DSC) analysis revealed that the microstructure of the ternary composites evolved from the initial separated EPDM and nano-CaCO3 dispersion structure to the sandbag structure and finally to the separated dispersion structure again with the increase of EPDM-g-MA content in the elastomer phase. The mechanical results showed the composites with the sandbag microstructure exhibited excellent toughness and stiffness.  相似文献   

5.
《Composite Interfaces》2013,20(5-7):603-614
In this study composites of high density polyethylene (HDPE) with various SiO2 content were prepared by melt compounding using maleic anhydride grafted polyethylene (PE-g-MAH) as a compatibilizer. The composites containing 2, 4 and 6% by weight of SiO2 particles were melt-blended in a co-rotating twin screw extruder. In all composites, polyethylene-graft-maleic anhydride copolymer (PE-g-MAH, with 0.85% maleic anhydride content) was added as a compatibilizer in the amount of 2% by weight. Morphology of inorganic silica filler precipitated from emulsion media was investigated. Mechanical properties and composite microstructure were determined by tensile tests and scanning electron microscopy technique (SEM). Tensile strength, yield stress, Young's modulus and elongation at break of PE/SiO2 composites were mainly discussed against the properties of PE/PE-g-MAH/SiO2 composites. The most pronounced increase in mechanical parameters was observed in Young's modulus for composites with polyethylene grafted with maleic anhydride. The increase in the E-modulus of PE/PE-g-MAH/SiO2composites was associated with the compatibility and improvement of interfacial adhesion between the polyethylene matrix and the nanoparticles, leading to an increased degree of particle dispersion. This finding was verified on the basis of SEM micrographs for composites of PE/PE-g-MAH/4% by weight of SiO2. The micrographs clearly documented that addition of only 2 wt% of the compatibilizer changed the composite morphology by reducing filler aggregates size as well as their number. Increased adhesion between the PE matrix and SiO2 particles was interpreted to be a result of interactions taking place between the polar groups of maleic anhydride and silanol groups on the silica surface. These interactions are responsible for reduction of the size of silica aggregates, leading to improved mechanical properties.  相似文献   

6.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

7.
The influence of malonic acid (MA) treatment of nano-calcium carbonate (CaCO3) on the crystallization, morphology, and mechanical properties of isotactic polypropylene (iPP)/nano-CaCO3 composites have been studied. The results of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM) show that untreated nano-CaCO3 facilitates the formation of α phase, while MA treated nano-CaCO3 increases the relative content of β phase of iPP dramatically. The results of scanning electron microscopy (SEM) show that MA treated nano-CaCO3 has better dispersion in the matrix than the untreated one. The toughness of PP/MA treated nano-CaCO3 composite is improved drastically. When 2.5 wt% MA treated nano-CaCO3 is added, the Izod notched impact strength reaches its maximum, which is 2.89 times greater than that of the pure iPP.  相似文献   

8.
Nylon 6 (PA 6)/ethylene bis-stearamide (EBS)/SiO2- carboxylic acid-functionalized silica nanoparticles (COOH) composites were prepared by in-situ polymerization of caprolactam. SiO2-COOH was used to enhance the compatibility between SiO2 and PA 6 matrix. For comparison, pure PA 6 and PA 6/EBS composites were also prepared via the same method. The PA 6/EBS/SiO2-COOH composites with low content of EBS and SiO2-COOH had greater melt-flow index (MFI) (the value of MFI increased by 50%–80%) than the pure PA 6. The results of mechanical properties showed almost no decrease in the tensile strength of PA 6/EBS/SiO2-COOH composites, with the bending strength decreasing by 17%–21%. However, the Izod impact strength of the PA 6/EBS/SiO2-COOH composites was greatly improved compared with pure PA 6, which indicated that the toughness of PA 6/EBS/SiO2-COOH had been greatly improved. The morphology of Izod impacted fractured surfaces of PA 6/EBS/SiO2-COOH was observed by scanning electron microscopy. The results revealed that the PA 6/EBS/SiO2-COOH composites presented a typical ductile fracture behavior with large amounts of long and large strip-like cracks. When the content of SiO2-COOH was 0.2 wt%, the SiO2-COOH particles were uniformly dispersed over the entire body of the PA 6 matrix. The results from differential scanning calorimetry indicated that the melting point (Tm), degree of crystallinity (Xc), and crystallization temperatures (Tc) of PA 6/EBS/SiO2-COOH composites were lower than the pure PA 6.  相似文献   

9.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

10.
The effect of compatibilization on the adhesion, fracture toughness, morphology, and mechanical properties of isotactic polypropylene (PP)/polyamide 6 (PA) blends was investigated. Maleic anhydride (MAH) functionalized poly-(ethylene-co-vinyl acetate) (EVA-g-MAH) and nonreactive EVA copolymer were used as compatibilizers in binary blends. An attempt of in situ compatibilization via addition of pure maleic anhydride to PA/EVA/PP melt was also made. The blends containing maleated EVA copolymer showed more regular and finer dispersion of phases, better adhesion at the interface, and improved mechanical properties.  相似文献   

11.
The flexural properties of poly-L-lactide (PLLA) and polycaprolactone (PCL) shape memory composites filled with nanometer calcium carbonate (nano-CaCO3) were determined at room temperature. The results showed that with the increase of the nano-CaCO3 weight fraction the flexural moduli and strength of PCL/nano-CaCO3 composites increased roughly linearly and reached a maximum at the filler content of 2%, while the flexural strength of the composites decreased. The flexural moduli and strength of the composites decreased roughly linearly with increasing PLLA/PCL ratio for the PLLA/PCL/nano-CaCO3 composites.  相似文献   

12.
The effects of different processing methods (direct extrusion, two-step extrusion or lateral injection extrusion) on the morphology of polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM)/calcium carbonate nanoparticles (nano-CaCO3) ternary blend were investigated, including the morphology of the EPDM phase and the distribution of nano-CaCO3 particles, by means of scanning electron microscopy (SEM). The results showed that the processing methods had a significant influence on the morphology of the EPDM phase and the distribution of nano-CaCO3 particles. In the lateral injection extruded blends, it was amazingly observed that the EPDM particles encapsulated the PP phase tightly, and the dimension of EPDM particles was remarkably decreased. It was also found that the content of nano-CaCO3 particles in the matrix of the lateral injection extruded blends was less than that of the two-step extruded blend, and that of the direct extruded blend was most. The properties of the ternary blend, including dynamic mechanical properties, rheological properties, and crystallization, were characterized in order to confirm the variety of morphologies caused by the different processing methods. The differences in the crystallization temperature, elastic modulus, and glass transition temperature of the blends prepared by different methods well agreed with the variation of their morphology.  相似文献   

13.
The role of spherical nano-CaCO3 particles treated with 2 wt% and 6 wt% stearic acid (SA), respectively, on the motion of macromolecular chains and segments of isotactic polypropylene (iPP) was studied through the dynamic mechanical analysis and nonisothermal crystallization. Higher nucleation activity of the particles and more nucleating sites were achieved in the 6 wt% SA treated particle nanocomposites with respect to the 2 wt% SA counterpart. The increased nucleation efficiency caused high inhomogeneity and thus large mobility of the amorphous phase of iPP, which favored a low glass transition temperature (Tg ) in the nanocomposites. However, the spherical nanoparicles also spatially restrained the motion of macromolecular chains and segments, and the better the nanoparticles dispersed, the stronger the restriction was. Thus the glass transition temperature (Tg ) of the nanocomposites decreased with increasing filler loading but recovered at a certain particle concentration. At this filler content, the maximal α-transition temperature (Tα ) and the main melting peak temperature (Tm1 ) as well as the lowest degree of crystallinity (XPP ) also occurred. This critical filler loading appeared at lower value (20 wt%) in 6 wt% SA treated nano-CaCO3 composites with respect to 2 wt% SA counterpart (25%) due to the better dispersion of particles in the former. It was concluded that the mobility of the macromolecular chains and segments of iPP was dominated by the competition of the spatial confinement and nucleation effect of nano-CaCO3 particles in the matrix.  相似文献   

14.
Poly(vinyl chloride)/calcium carbonate (PVC/CaCO3) composites with micrometer or nanometer CaCO3 as fillers were prepared by the solution blending method. The thermogravimetric analysis (TGA) of the composite films conducted in N2 atmosphere showed that the addition of the CaCO3 fillers could improve their thermal stabilities. It was also found that the nanometer CaCO3 filler provided better thermal stabilities than the micrometer fillers even with a smaller amount. The mechanism of the improvements was investigated by a facile chemical analysis developed to examine the thermal stabilizing effect of calcium carbonate particles with different sizes in PVC/CaCO3 composites after the pyrolysis of the samples in an air atmosphere in an oven.  相似文献   

15.
《Composite Interfaces》2013,20(3):271-276
HEC-g-AA/SiO2 hybrid materials are prepared through a graft copolymerization reaction between acrylic acid (AA) monomer and hydroxyethyl cellulose (HEC), in the presence of a silica sol. The microstructure and properties of the hybrid materials are characterized by Fourier transform infrared spectra (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The results show that a rigid inorganic phase SiO2 is dispersed in flexible organic continuous phase uniformly. HEC-g-AA/SiO2 hybrid material has no obvious phase separation in the presence of the crosslinking agent. The thermal performances of HEC-g-AA/SiO2 are excellent, and the glass transition temperature (T g) increases with the increased amount of the crosslinking agent.  相似文献   

16.
Pimelic acid (PA) was used as a new surface modifier for CaCO3. The effects of PA treatment on the crystallization, morphology, and mechanical properties of PP/CaCO3 composites were investigated. Fourier transform infrared (FTIR) spectroscopy analysis revealed that PA bonded to CaCO3 and formed a calcium pimelate surface layer after reacting with CaCO3. The results of wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarized light microscopy (PLM) proved that the PA treated CaCO3 induced a large amount of β -iPP and decreased the spherulitic size of PP. The results of scanning electron microscopy (SEM) showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between PP and CaCO3. The toughness of the composites was improved by the more ductile β -form spherulites. When 1% of PA treated CaCO3 was added, the notched impact strength reached its maximum, a value of 19.79 kJ/m2, which was 3.64 times greater than that of the pure PP.  相似文献   

17.
Polylactide (PLA)/poly(ethylene-co-octene)(POE) blends with various contents of nano-SiO2 were prepared via melt mixing. The structure and properties of the PLA/POE/nano-SiO2 ternary composites were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheometry, and tensile testing. The particle size of the dispersed POE phase first decreased with increasing nano-SiO2 content and then remained constant. Nano-SiO2 played an important role in the heterogeneous nucleation of PLA, which resulted in an increase of the crystallinity of PLA. The synergistic effect of both POE and nano-SiO2 can significantly improve the toughness, strength, and modulus of PLA. When the ratio of PLA/POE/nano-SiO2 was 90/10/0.5, PLA/POE/nano-SiO2 composite had the best comprehensive properties.  相似文献   

18.
《Composite Interfaces》2013,20(2-3):319-341
The morphology and mechanical properties of reconstituted wood board waste-polyethylene composites were studied using virgin polyethylene (PE) and 2 wt% maleic anhydride (MA) modified polyethylene (MAPE) as matrices. Although the wood waste (WW) and PE are not compatible with each other, dynamic mechanical analyses (DMA) show considerable shifting in the α-transition temperature and crystallisation temperature (T c) of PE in the unmodified composites, indicating physical interaction between PE and WW. The increase in crystallinity with increasing WW content up to 50 wt% indicates that WW is a potential nucleating agent for PE. However, the tensile strength of the unmodified composites gradually decreases with WW content, indicating that the improvement in interface adhesion is essential for WW to be used as reinforcing fillers. Fourier transform infrared spectroscopic (FTIR) results indicate that MAPE interacts with WW through esterification and hydrogen bonding to form good adhesion between the two phases. Inward shifting in glass transition temperature (T g) for the MAPE-based composites containing less than 60 wt% WW indicates that WW and MAPE are partially compatible with each other. SEM micrographs of MAPE-based composites provide further evidence for this mechanism. The tensile strength of the MAPE-based composites is clearly higher than that of the virgin PE-based composites.  相似文献   

19.
《Composite Interfaces》2013,20(2-3):113-126
Polyamide66/polypropylene (PA66/PP) blend, graphite (Gr)-filled PA66/PP composite and nanoclay (NC)-filled PA66/PP nanocomposites were prepared by twin screw extrusion and injection molding. Three-body abrasive wear behaviour of the injection moulded composites was carried out using a rubber wheel abrasion wear tester. In this study, angular silica sand and quartz particles of size ranging from 200 to 250 μm were used as dry and loose abrasives. The tests were carried out for 150, 300, 450 and 600 m abrading distances at a constant load of 36 N. It was observed that inclusion of particulate fillers in PA66/PP have significant influence on wear under varied abrading distances for different abrasive particles. Further, it was found that NC-filled PA66/PP nanocomposite exhibited lower wear rate compared to Gr filled ones for different abrasive particles. In addition, the worn surfaces of the samples were examined by scanning electron microscopy (SEM) and the morphology was also discussed.  相似文献   

20.
A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO x solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic–inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号