首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A signal enhancing method allowing highly sensitive detection of E. coli 16s rRNA was developed using peptide nucleic acid (PNA) as a capture probe and a surface plasmon resonance (SPR) sensor as a detector. 16s rRNA has been used as a genetic marker for identification of organisms, and can be analyzed directly without PCR amplification due to the relatively high number of copies. PNA has a neutral backbone structure, therefore hybridization with 16s rRNA results in the ionic condition being changed from neutral to negative. A cationic Au nanoparticle was synthesized and used for signal amplification by ionic interaction with 16s rRNA hybridized on the PNA probe-immobilized SPR sensor chip. This method resulted in a detection limit of E. coli rRNA of 58.2 ± 1.37 pg mL−1. Using this analytical method, Staphylococcus aureus was detected without purification of rRNA.  相似文献   

2.
Honglan Qi 《Talanta》2007,72(3):1030-1035
A sensitive electrochemical detection of DNA hybridization using a paste electrode assembled by multi-wall carbon nanotubes (MWNT) and immobilizing DNA probe within electropolymerized polypyrrole (ppy) was developed. The detection approach relied on entrapping of DNA probe within electropolymerized ppy film on the MWNT paste electrode and monitoring the current change generated from an electroactive intercalator of ethidium bromide (EB) after DNA hybridization. As a consequence of DNA hybridization, significant changes in the current of EB intercalated with double-stranded DNA (ds-DNA) on the MWNT paste electrode were observed. Based on the response of EB, only the complementary DNA sequence gave an obvious current signal compared with the five-point mismatched and non-complementary sequences. The oxidation peak current was linearly related to the logarithm of the concentration of the complementary DNA sequence from 1.0 × 10−10 to 1.0 × 10−8 M with a detection limit of 8.5 × 10−11 M. This work demonstrates that the incorporation of MWNT paste electrode with electropolymerization is a promising strategy of functional interfaces for the immobilization of biological recognition elements.  相似文献   

3.
Multiplex electrochemical detection of two DNA target sequences in one sample using enzyme-functionalized Au nanoparticles (AuNPs) as catalytic labels for was proposed. This DNA sensor was fabricated using a “sandwich” detection strategy, involving two kinds of capture probes DNA immobilized on glassy carbon electrode (GCE), and hybridization with target DNA sequences, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of DNA sequences, one was complementary to the target DNA, while the other was noncomplementary to the target. The noncomplementary sequences were linked with horseradish peroxidase (HRP) and alkaline phosphatase (ALP), respectively. Enhanced detection sensitivity was obtained where the AuNPs carriers increased the amount of enzyme molecules per hybridization. Electrochemical signals were generated from the enzymatic products produced from the substrates catalyzed by HRP and ALP. Under optimal conditions, a 33-mer sequence could be quantified over the ranges from 1.5 × 10−13 to 5.0 × 10−12 M with a detection limit of 1.0 × 10−13 M using HRP-AuNP as labels, and a 33-mer sequence could be quantified over the ranges from 4.5 × 10−11 M to 1.0 × 10−9 M with a detection limit of 1.2 × 10−11 M using ALP-AuNP as labels.  相似文献   

4.
A capacitive immunosensor for detection of cholera toxin   总被引:2,自引:0,他引:2  
Contamination of food with biological toxins as well as their potential use as weapons of mass destruction has created an urge for rapid and cost effective analytical techniques capable of detecting trace amounts of these toxins. This paper describes the development of a sensitive method for detection of cholera toxin (CT) using a flow-injection capacitive immunosensor based on self-assembled monolayers. The sensing surface consists of monoclonal antibodies against the B subunit of CT (anti-CT), immobilized on a gold transducer. Experimental results show that the immunosensor responded linearly to CT concentrations in the range from 1.0 × 10−13 to 1.0 × 10−10 M under optimized conditions. The limit of detection (LOD) was 1.0 × 10−14 M. Two more analytical methods were employed for detection of CT using the same antibody namely, sandwich ELISA and surface plasmon resonance (SPR)-based immunosensor. The former had an LOD of 1.2 × 10−12 M and a working range from 3.7 × 10−11 to 2.9 × 10−10 M whereas, the later had an LOD of 1.0 × 10−11 M and a linearity ranging from 1.0 × 10−9 to 1.0 × 10−6 M. These results demonstrate that the developed capacitive immunosensor system has a higher sensitivity than the other two techniques. The binding affinity of CT to the immobilized anti-CT was determined using the SPR-based immunosensor and an association constant (KA) of 1.4 × 109 M−1 was estimated.  相似文献   

5.
A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0×10−8 to 0.1 μg ml−1 for herring sperm DNA and 2.0×10−6 to 0.2 μg ml−1 for calf thymus DNA with 3σ detection limits of 8.3×10−9 μg ml−1 for herring sperm DNA and 3.5×10−7 μg ml−1 for calf thymus DNA, respectively. The relative standard deviation for 1.0×10−4 μg ml−1 herring sperm DNA was 0.99% and 2.0×10−3 μg ml−1 for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper.  相似文献   

6.
A surface plasmon resonance (SPR) sensor integrating a small sensor probe, a laser emission diode, a photo detector, and a polarizer was developed as a portable sensing device. The sensor probe was made with a glass cylinder, 50 mm long and 1.5 mm in diameter, that was connected directly to a beam splitter without optical fibers. The SPR spectrum obtained with this probe system showed a 10% reflectivity minimum at 690 nm. Shifts of the SPR spectrum induced by refractive index (RI) changes in the sample were measured by detecting the reflection light intensity at 670 nm. When the sensitivity was compared using a BIAcore™ SPR instrument, the lowest sensor response of 1 mV observed with the SPR probe system coincided with 1.4 × 10−6 of the RI changes. The RI resolution of the SPR probe was estimated with experimentally evaluated noise on the signal, and, consequently, it was concluded that the RI resolution was 1.2 × 10−5. Moreover, immunoreaction was demonstrated with adsorbed bovine serum albumin (BSA) and anti-BSA antibody as an analyte. As a result, 50 ng mL−1 of the lower detection limit was estimated.  相似文献   

7.
The electrochemical detection of cell lines of MCF-7 (human breast cancer) has been reported, using magnetic beads for the separation tool and high-affinity DNA aptamers for signal recognition. The high specificity was obtained by using the magnetic beads and aptamers, and the good sensitivity was realized with the signal amplification of DNA capped CdS or PbS nanocrystals. The ASV (anodic stripping voltammetry) technology was employed for the detection of cadmic cation and lead ions, for electrochemical assay of the amount of the target cells and biomarkers on the membrane of target cells, respectively. This electrochemical method could respond to as low as 100 cells mL−1 of cancer cells with a linear calibration range from 1.0 × 102 to 1.0 × 106 cells mL−1, showing very high sensitivity. Moreover, the amounts of HER-3 which were overexpressed on MCF-7 cells were calculated correspond to be 3.56 × 104 anti-HER-3 antibody molecules. In addition, the assay was able to differentiate between different types of target and control cells based on the aptamers and magnetic beads used in the assay, indicating the wide applicability of the assay for early and accurate diagnose of cancers.  相似文献   

8.
Simple and sensitive DNA sensors have been developed on a base on graphite screen-printed electrodes modified with DNA and enzymes. Cholinesterase and peroxidase immobilized by treatment with glutaraldehyde were used for the detection of human DNA antibodies of systemic lupus erythematosus and bronchial asthma patients. The amperometric signal was measured at +680 mV versus Ag/AgCl for DNA-cholinesterase sensor and −150 mV for DNA-peroxidase sensor 5 min after the injection of acethylthiocholine and hydroquinone, respectively. The addition of serum samples results in the sharp decrease of the signal due to the formation of DNA-antibody adducts followed by the suppression of the access of substrate to the enzyme active site. Sulfonamide medicines suppress the DNA-antibody interaction due to the competitive binding along DNA minor grooves. DNA sensor labeled with peroxidase showed the linear calibration range of 5×10−9 to 7×10−5 mol l−1 of sulfamethoxazole and of 5×10−8 to 1×10−4 mol l−1 of sulfathiazole.  相似文献   

9.
An electrochemiluminescent cholesterol disposable biosensor has been prepared by the formation of assembled layers on gold screen-printed cells. The detection layer is based on the electro-formation of new luminol copolymers with different synthesized biotinylated pyrroles prepared by click-chemistry, offering a new transduction layer with new electroluminescent properties on biosensors. The electrochemiluminescence (ECL) luminol copolymers are electroformed by cyclic voltammetry (five cycles) at pH 7.0 uses a10−3 M biotinylated pyrrole–luminol ratio of 1:10 in PBS buffer. With respect to the recognition layer, cholesterol oxidase was biotinylated by incubation with biotin vinyl sulfone, and immobilized on the copolymer by avidin–biotin interaction. The analytical signal of the biosensor is the ECL enzymatic initial rate working in chronoamperometric mode at 0.5 V excitation potential with 10 s between pulses at pH 9.5. The disposable device offers a cholesterol linear range from 1.5 × 10−5 M to 8.0 × 10−4 M with a limit of detection of 1.47 × 10−5 M and accuracy of 7.9% for 9.0 × 10−5 M and 14.1% for 2.0 × 10−4 M, (n = 5). Satisfactory results were obtained for cholesterol determination in serum samples compared to a reference procedure.  相似文献   

10.
Xiluan Yan  Masaaki Kai 《Talanta》2009,79(2):383-4519
We have developed a novel sensitive chemiluminescence (CL) aptasensor for the target assay as exemplified by using adenosine as a model target. In this work, we have demonstrated the signaling mechanism to make detection based on magnetic separation and 3,4,5-trimethoxyl-phenylglyoxal (TMPG), a special CL reagent as the signaling molecule, which reacts instantaneously with guanine nucleobases (G) of adenosine-binding aptamer strands. Briefly, amino-functioned capture DNA sequences are immobilized on the surface of carboxyl-modified magnetic beads, and then hybridized with label-free G-rich (including 15 guanine nucleobases) adenosine-binding aptamer strands to form our CL aptasensor. Upon the introduction of adenosine, the aptamer on the surface of magnetic beads is triggered to make structure switching to the formation of the adenosine/aptamer complex. Consequently, G-rich aptamer strands are forced to dissociate from magnetic beads sensing interface, resulting in a decrease of CL signal. The decrement of peak signal is proportional to the amount of adenosine. The effects of the amounts of capture DNA, aptamer, magnetic beads are investigated and optimized. It was found that the CL intensity had a linear dependency on the concentration of adenosine in the range of 4 × 10−7 to 1 × 10−5 M. With a low detection limit of 8 × 10−8 M and simplicity in CL detection, this novel technique will offer a great promise for future target/aptamer analysis.  相似文献   

11.
Molecularly imprinted polymer gel film on the gold substrate of a chip was prepared with minute amount of cross-linker for the fabrication of a surface plasmon resonance (SPR) sensor sensitive to 3,3′-dichlorobenzidine. The molecularly imprinted gel film was anchored on a gold chip by a surface-bound photo-radical initiator. The sensing of 3,3′-dichlorobenzidine is based on responsive shrinkage of the imprinted polymer gel film that is triggered by target binding. This change can improve the responsiveness of the imprinted SPR sensor to 3,3′-dichlorobenzidine. The molecularly imprinted polymer gel film was characterized with contact angle measurements, electrochemical impedance spectroscopy, cyclic voltammogram, swelling measurements and atomic force microscopy. The changes of SPR spectroscopy wavenumber shifts revealed that the imprinted gel sensing film can ‘memorize’ the binding of 3,3′-dichlorobenzidine compared to non-imprinted one. The imprinted gel-SPR sensor showed a linear response in the range of 9.0 × 10−12 to 5.0 × 10−10 mol L−1 (R2 = 0.9998) for the detection of 3,3′-dichlorobenzidine, and it also exhibited high selectivity to 3,3′-dichlorobenzidine compared to its structurally related analogues. We calculated the detection limits to be 0.471 ng L−1 for tap water and 0.772 ng kg−1 for soil based on a signal to noise ratio of 3. The method showed good recoveries and precision for the samples spiked with 3,3′-dichlorobenzidine. This suggest that the imprinted gel-SPR sensing method can be used as a promising alternative for the detection of 3,3′-dichlorobenzidine.  相似文献   

12.
Screen-printed electrodes modified with carbon paste that consisted of graphite powder dispersed in ionic liquids (IL) were used for the electrochemical determination of dopamine, adrenaline and dobutamine in aqueous solutions by means of cyclic voltammetry. The IL plays a dual role in modifying compositions, acting both as a binder and chemical modifier (ion-exchanger); ion-exchange analyte pre-concentration increases analytical signal and improves the sensitivity. Calibration graphs are linear in concentration range 3.9 × 10−6 to 1.0 × 10−4 M (dopamine), 2.9 × 10−7 to 1.0 × 10−4 M (adrenaline) and 1.7 × 10−7 to 1.0 × 10−4 M (dobutamine); detection limits are (1.2 ± 0.1) × 10−6, (1.3 ± 0.1) × 10−7 and (5.3 ± 0.1) × 10−8 M, respectively. Using an additive of Co (III) tetrakis-(tert-butyl)-phthalocyanine leads to the increase of signal and lowering detection limit. Some practical advises concerning both the sensor design and selectivity of catecholamine determination are provided.  相似文献   

13.
Takátsy A  Csóka B  Nagy L  Nagy G 《Talanta》2006,69(1):281-285
Amperometric detection combined with separation technique or with selective molecular recognition step can be very effective solving quantitative analytical tasks. When the amperometric working electrode surface needs cleaning or reactivation, pulsed amperometric technique can be the choice. Coating working electrodes with different sensitizing or protecting layer is quite common in the practice of voltammetric analysis. In these studies the behavior of coated electrodes using a simplified pulsed amperometric working program which can be named periodically interrupted amperometric (PIA) detection has been investigated. Rotating platinum, and carbon paste electrodes coated with dialysis film or porcine intestinal membrane were used in the experiments. The signal in case of electrochemical oxidation of hydrogen peroxide and ascorbic acid at convective conditions has been evaluated. The signal, obtained with conventional amperometry has been compared with signal collected with a periodically interrupted amperometric measuring program, allowing time for the diffusion to reload the diffusion layer at the electrode surface. The sensitivity and the lower limit of detection (4.5 × 10−7 M for ascorbic acid and 2 × 10−6 M for H2O2) proved superior in case of the periodically interrupted amperometry.  相似文献   

14.
Continuous-flow (CF) and flow-injection (FI) analysis using the fluoride ion-selective electrode (FISE) as detector have been investigated. The measurements were performed in a home-made cell under appropriate flow conditions (2.86 or 3.45 ml min−1, 0.2 ml samples, 10−6 M sodium fluoride). The calibration graph was obtained by plotting the signal height versus concentration of iron in the range of Fe(III) concentration from 10−5 to 10−1 M in acetate buffer (pH 2.8 or 3.4). In all described procedures, the range of linear response extends to the Fe(III) concentration from 1×10−3 to 1×10−1 M, with detection limit 9×10−5 M. The effect of double-line, two-line flow manifold and CF was investigated and discussed.  相似文献   

15.
Liu AL  Zhang SB  Chen W  Huang LY  Lin XH  Xia XH 《Talanta》2008,77(1):314-318
The electrochemical behavior of isorhamnetin (ISO) at a glassy carbon electrode was studied in a phosphate buffer solution (PBS) of pH 4.0 by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). A well-defined redox wave of ISO involving one electrons and one proton appeared. The electrode reaction is a reactant weak adsorption-controlled process with a charge transfer coefficient (α) of 0.586. Based on the understanding of the electrochemical process of ISO at the glassy carbon electrode, analysis of ISO can be realized. Under optimal conditions, the oxidation peak current showed linear dependence on the concentration of ISO in the range of 1.0 × 10−8 to 4.0 × 10−7 M and 1.0 × 10−6 to 1.0 × 10−5 M. The detection limit is 5.0 × 10−9 M. This method has been successfully applied to the detection of ISO in tablets.  相似文献   

16.
Cancer is one of the most serious and lethal diseases around the world. Its early detection has become a challenging goal. To address this challenge, we developed a novel sensing platform using aptamer and RNA polymerase-based amplification for the detection of cancer cells. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for collection of the cells in the microplate wells, and uses SYBR Green II dye as a tracer to produce strong fluorescence signal. The tumor marker interacts first with the recognition probes which were composed of the aptamer and single-stranded T7 RNA polymerase promoter. Then, the recognition probe hybridized with template probes to form a double-stranded T7 RNA polymerase promoter. This dsDNA region is extensively transcribed by T7 RNA polymerase to produce large amounts of RNAs, which are easily monitored using the SYBR Green II dye and a standard fluorometer, resulting in the amplification of the fluorescence signal. Using MCF-7 breast cancer cell as the model cell, the present sensing platform showed a linear range from 5.0 × 102 to 5.0 × 106 cells mL−1 with a detection limit of 5.0 × 102 cells mL−1. This work suggested a strategy to use RNA signal amplification combining aptamer recognition to develop a highly sensitive and selective method for cancer cells detection.  相似文献   

17.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

18.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

19.
A novel assay for the voltammetric detection of 18-bases DNA sequences relating to Chronic Myelogenous Leukemia (CML, Type b3a2) using methylene blue (MB) as the hybridization indicator was reported. DNA was covalently attached onto a glassy carbon electrode (GCE) through amines of the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N′-ethyl carbodiimidehydrochloride (EDC). The covalently immobilized single-stranded DNA (ssDNA) could selectively hybridize with its complementary DNA (cDNA) in solution to form double-stranded DNA (dsDNA) on the surface. A significant increase of the peak current for methylene blue upon the hybridization of immobilized ssDNA with cDNA in the solution was observed. This peak current change was used to monitor the recognition of CML DNA sequence. This electrochemical approach is sequence specific as indicated by the control experiments in which no peak current change was observed if a non-complementary DNA sequence was used. Factors, such as DNA target concentration and hybridization conditions determining the sensitivity of the electrochemical assay were investigated. Under optimal conditions, this sensor has a good calibration range between 1.25 × 10−7 and 6.75 × 10−7 M, with CML DNA sequence detection limit of 5.9 × 10−8 M.  相似文献   

20.
In this study, an electrochemical DNA biosensor was developed based on the recognition of target DNA by hybridization detection. The study was carried out using glassy carbon electrode (GCE) modified with lable-free 21-mer single-stranded oligonucleotides related to hepatitis B virus sequence via covalent immobilization and [Cu(dmp)(H2O)Cl2] (dmp = 2,9-dimethyl-1,10-phenanthroline) as an electrochemical indicator, whose sizes are comparable to those of the small groove of native double-duplex DNA. The method, which is simple and low cost, allows the accumulation of copper complex within the DNA layer. Electochemical detection was performed by cyclic voltammetry and differential pulse voltammetry over the potential range where the [Cu(dmp)(H2O)Cl2] was active. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed the assay time. With this approach, a sequence of the hepatitis B virus could be quantified over the ranges from 8.82 × 10−8 to 8.82 × 10−7 M with a linear correlation of r = 0.9937 and a detection limit of 7.0 × 10−8 M. The [Cu(dmp)(H2O)Cl2] signal observed from probe sequence before and after hybridization with four bases mismatch containing sequence is lower than that observed after hybridization with complementary sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号