首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Label-free aptamer-based chemiluminescence detection of adenosine
Authors:Xiluan Yan  Masaaki Kai
Institution:a School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
b Faculty of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
Abstract:We have developed a novel sensitive chemiluminescence (CL) aptasensor for the target assay as exemplified by using adenosine as a model target. In this work, we have demonstrated the signaling mechanism to make detection based on magnetic separation and 3,4,5-trimethoxyl-phenylglyoxal (TMPG), a special CL reagent as the signaling molecule, which reacts instantaneously with guanine nucleobases (G) of adenosine-binding aptamer strands. Briefly, amino-functioned capture DNA sequences are immobilized on the surface of carboxyl-modified magnetic beads, and then hybridized with label-free G-rich (including 15 guanine nucleobases) adenosine-binding aptamer strands to form our CL aptasensor. Upon the introduction of adenosine, the aptamer on the surface of magnetic beads is triggered to make structure switching to the formation of the adenosine/aptamer complex. Consequently, G-rich aptamer strands are forced to dissociate from magnetic beads sensing interface, resulting in a decrease of CL signal. The decrement of peak signal is proportional to the amount of adenosine. The effects of the amounts of capture DNA, aptamer, magnetic beads are investigated and optimized. It was found that the CL intensity had a linear dependency on the concentration of adenosine in the range of 4 × 10−7 to 1 × 10−5 M. With a low detection limit of 8 × 10−8 M and simplicity in CL detection, this novel technique will offer a great promise for future target/aptamer analysis.
Keywords:Aptamer  Adenosine  Chemiluminescence  Label-free  Magnetic beads
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号