首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An imaging technique of electrically detected magnetic resonance (EDMR) was newly developed. Because the EDMR signal is obtained from paramagnetic recombination centers, one may expect the image to represent the distribution of defect and/or impurity sites in the sample. We successfully obtained EDMR images of a light-illuminated silicon plate 8 mm in width and 15 mm in length, which was cut from a silicon wafer (n-type, 100 Omega cm), under ESR irradiation at a frequency of 890 MHz (wavelength, 340 mm). The reproducibility of the EDMR image obtained from a sample was amply satisfactory. When the oxidized surface of the silicon was removed, the EDMR signal disappeared. Although the EDMR signal reappeared when the surface of the sample became reoxidized, the EDMR image obtained was slightly different from the earlier one. This finding shows that the EDMR image obtained from the sample shows the distribution of defects at the Si/SiO(2) interface.  相似文献   

2.
Signal intensities of longitudinally detected ESR (LODESR) of 1,1-diphenyl-2-picrylhydrazyl powder were precisely measured at 250 to 950 MHz under a constant magnetic field microwave that was applied using a single-turn coil. The LODESR signal intensity was reduced linearly due to smaller Zeeman splitting. Because the noise level was constant, the sensitivity of LODESR was approximately proportional to the resonant frequency. As far as we know, this study represents the first attempt to measure precisely the relationship between the signal intensities and resonant frequencies of ESR in an experimental condition.  相似文献   

3.
闫孝鲁  张晓萍  李阳梅 《物理学报》2016,65(13):138402-138402
提出了一种新型低阻抗高功率微波源,能在单个器件内产生两束锁相的相干高功率微波,对两束相干微波进行功率合成有望在单个高功率微波器件中实现更高的功率输出.粒子模拟结果显示,在电压687 k V、磁场0.8 T时,该微波源整体阻抗36?,两束微波的频率都为9.72 GHz,输出功率分别为1.20 GW和2.58 GW,功率效率分别为28%和30%;两束输出微波之间频率抖动小于±3 MHz,相位差抖动小于±3?.  相似文献   

4.
KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting-receiving system in the presence of intense high frequency (a few MHz) electromagnetic noise. Initially, the diode detector output signal could not be recorded due to the high noise level persisting in the ambiance. It was found that the HPM pulse can be successfully detected using wide band antenna, RF cable and diode detector set-up in the presence of significant electromagnetic noise. Estimated microwave peak power was ∼59.8 dBm (∼1 kW) at 7 m distance from the VIRCATOR window. Peak amplitude of the HPM signal varies on shot-to-shot basis. Duration of the HPM pulse (FWHM) also varies from 52 ns to 94 ns for different shots.  相似文献   

5.
We report what we believe to be the first operation of more than 1000 h of a 266-nm (cw) frequency-quadrupled solid-state laser with a 100-mW output. We used beta-BaB(2)O(4)(BBO) crystal grown by the Czochralski method to double the green-light (532-nm) wavelength, using an external resonant cavity. The green light was generated with an intracavity frequency-doubled Nd:YVO(4)laser pumped by a 4-W laser diode. When the incident 532-nm power on the external resonant doubler was 500 mW, we generated 100 mW of cw 266-nm radiation with the BBO crystal. The degradation rate seems to be proportional to the strength of the UV optical electric field. We also obtained a relative intensity noise of -130dB/Hz at frequencies of 2 to 10 MHz for 266-nm laser light.  相似文献   

6.
Results of an experimental observation of the voltage oscillations associated with a discrete tunneling of holes in porous silicon at room temperature are presented. The noise characteristics of diode structures with a porous silicon interlayer formed on heavily boron-doped silicon single crystals are studied. Peaks of excessive noise are observed at frequencies of ~1 MHz, at which single-electron oscillations should be expected. The peak noise power is found to increase with current according to the ~2.5 power law and, at a current density of 0.15 A/cm2, to exceed the noise power of the receiver by three to four orders of magnitude. The complex shape of the noise spectrum and its extension to the higher frequency region with increasing current are explained by the three-dimensionality of the system of nanometer-sized silicon grains embedded in insulating silicon dioxide of porous silicon.  相似文献   

7.
We give a brief review of the state of the art of theoretical and experimental studies in the field of electrodynamics of resonant composite materials (metamaterials) whose dielectric permittivity or magnetic permeability or both can be negative. Principles and methods of realization of such metamaterials in the microwave range, their main distinctive electrodynamic properties, prospects for creating new systems and devices (e.g., more perfect lenses), and ways for moving towards the higher frequencies from microwaves to optics are discussed.  相似文献   

8.
Computer Simulation of a 5.7GHz, 110kW Transit-Time Oscillator   总被引:1,自引:0,他引:1  
A high-power transit-time oscillator producing 110kW at 5.7GHz in the TM010 cavity mode is described. The device comprises a temperature-limited diode electron gun operating at 40A in the range from 28kV to 35kV and an intermediate coaxial cavity from which the microwave power is extracted through a TEM coaxial guide. The diode serves also as a resonant cavity, where electromagnetic oscillations are grown from noise. The effect of the applied voltage on both the output microwave power and the instability saturation time has been investigated leading to an optimal diode voltage of 33kV.  相似文献   

9.
Hayasaka K  Zhang Y  Kasai K 《Optics letters》2004,29(14):1665-1667
Quantum-correlated twin beams were generated from a triply resonant optical parametric oscillator with an a-cut KTP crystal pumped by a frequency-doubled diode laser. A total output of 5.1 mW was obtained in the classical-nonclassical light-conversion system driven by a 50-mW diode laser at 1080 nm. A quantum-noise reduction of 4.3 dB (63%) in the intensity difference between the twin beams was successfully observed at the detection frequency of 3 MHz.  相似文献   

10.
We present the noise suppression of an amplified diode laser by using an optical filter and resonant optical feedback. The intensity noise of the amplified diode laser has been significantly decreased by using the optical filter cavity. It was further suppressed and reached the shot noise limit at 15 MHz by introducing resonant optical feedback from the transmission of the filter cavity. The filter cavity transmits 53% of injection power, and the output power of the filter cavity is more than 200 mW. The observed frequency fluctuations were less than 100 kHz in one minute. This level of noise suppression and output power may allow diode lasers to be utilized in many quantum-optics experiments. PACS 42.55-f; 42.55-Px; 42.50.-p  相似文献   

11.
A novel method for online correction of light intensity fluctuation in a practical tunable diode laser ab-sorption spectroscopy(TDLAS)system with wavelength modulation is presented.The proposed method is developed according to the linear relation between peaks at multiple frequencies of sine modulation in the power spectral density of the demodulated second-harmonic(2f)signal and the incident light intensity.Those peaks are demonstrated experimentally and explained as residual power at the first-harmonic and third-harmonic frequencies after 2f demodulation of the residual amplitude modulation signal due to the limited integrating time constant of the lock-in-amplifier.This method can achieve real-time correction of light intensity fluctuations with only little calculation.It can work well in a very large range of light intensity and has great potential applications in the wavelength modulation spectroscopy system.  相似文献   

12.
刘建丽  刘勤  李宏  李鹏  张宽收 《中国物理 B》2011,20(11):114215-114215
We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06 μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±1.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.  相似文献   

13.
DC bias is normally found in conventional measurements of electrically detected magnetic resonance (EDMR). Usually, electrodes are formed on the sample surface to make ohmic contacts for detecting changes in the electrical characteristics of the sample material. Thus, destructive procedures are required to detect the EDMR signal of bulk material with such methods. An AC bias detection technique was developed to allow the non-destructive EDMR measurement of bulk materials. An AC bridge circuit was constructed to detect the change in impedance of the sample, which when changed by ESR, an unbalanced AC voltage can be detected. By detecting this AC bias, it is possible to cancel the effects, such as Shottky barriers, that disturb the ohmic contact between the electrodes and a sample material. Further, the AC bias current penetrates the thin surface layer of a sample such as silicon oxide, which normally obstructs a DC current. This method was utilized using conductive rubber contacts for non-destructive EDMR measurements of part of a silicon wafer. EDMR spectra observed were the same as those obtained by the conventional method of using DC bias detection.  相似文献   

14.
15.
Time-resolved measurements of the microwave field effect using optically detected EPR (ODEPR) have demonstrated that the amplitude and lifetime of the slow component of fluorescence are additionally reduced by an external microwave field, at a microwave frequency of 9400 MHz, a constant magnetic field of 0.3295 T and an oxalylfluoride pressure of 30 mTorr. This is accompanied by an increase in the fast component amplitude, at a constant decay rate of (2.36 × 0.19) 107 s?1. The fluorescence intensity was found to decrease, and phosphorescence intensity to increase, with subsequent saturation at higher microwave intensities. The experimental data are interpreted using the indirect mechanism theory in the limit of low-level density.  相似文献   

16.
We present a 532 nm-pumped singly-resonant cw optical parametric oscillator based on MgO-doped PPLN with a minimum threshold pump power of 0.3 W. The OPO with a two-mirror standing-wave cavity is optimized by using a tunable diode laser on the path of the resonant signal beam. The maximum output power is 200 mW at an idler wavelength near 1330 nm at a pump power of 2 W. We report the degradation of the output power and beam characteristics at high pump power indicating a strong thermal lensing in the crystal. The continuous tuning range of the OPO is measured to be 800 MHz which is close to 90% of the free spectral range of the OPO cavity.  相似文献   

17.
 设计了一种带有反射腔的能在X波段实现稳定双频输出的圆柱结构相对论返波管,采用2.5维相对论全电磁PIC粒子模拟软件行粒子模拟研究。仿真结果表明:在输入电压433 kV、引导磁场2.2 T的条件下,实现了9.53,10.09 GHz的双频稳定输出,平均输出功率340 MW,平均功率效率24.1%。  相似文献   

18.
采用非临界相位匹配切割,尺寸5mm×5mm×20mm的KTA作为非线性光学晶体,进行了基于半导体激光端面抽运Nd:YLF/KTA的内腔式连续光学参量振荡激光研究,获得了中红外3.5μm波段的连续激光输出。为了提高连续光参量振荡腔内信号光的功率密度,降低激光输出阈值,采用对信号光高反射的单谐振腔结构进行激光实验。在8.35W的抽运功率下,分别获得了335mW和110mW的3440nm和1505nm的激光输出,对应的总转换效率达到了5.6%。该实验研究表明半导体激光端面抽运的内腔式KTA连续光学参量振荡也能获得高效的中红外激光输出。  相似文献   

19.
Stochastic excitation with a full-width-half-maximum bandwidth of 250 MHz was used to perform Fourier-transform (FT) high-field/high-frequency electron paramagnetic resonance (EPR) at 3.4T/95 GHz (W-band). Thereby, the required microwave peak power is reduced by a factor of tau(p)/T1 as compared to equivalent pulsed FT EPR in which the spin system with spin-lattice relaxation time T1 is excited by a single microwave pulse of length tau(p). Stochastic EPR is particularly interesting under high-field/high-frequency conditions, because the limited output power of mm microwave sources, amplifiers, and mixers makes pulse FT EPR in that frequency domain impossible, at least for the near future. On the other hand, FT spectroscopy offers several advantages compared to field-swept magnetic resonance methods, as is demonstrated by its success in NMR and X-band EPR. In this paper we describe a novel stochastic W-band microwave bridge including a bimodal induction mode transmission resonator that serves for decoupling the microwave excitation and signal detection. We report first EPR measurements and discuss experimental difficulties as well as achieved sensitivity. Moreover, we discuss future improvements and the possibility for an application of stochastic W-band FT EPR to transient signals such as those of photoexcited radical pairs in photosynthetic reaction centers.  相似文献   

20.
基于真空二极管设计了一种X波段大功率微波检波器,该检波器主要由真空二极管、BJ-100波导、调谐螺栓、低通滤波器和直流电源组成,其工作频率可根据需要在8.6~9.8GHz范围内调谐。重点阐述该型大功率微波检波器的结构设计、实验室标定及辐射场测量实验结果,研究了不同脉宽和不同灯丝电压与检波特性的依赖关系。实验结果表明:该型检波器具有承受微波脉冲功率高(大于7kW)、响应快(响应时间小于2.0ns)、动态范围大、输出信号幅度高(可达数十V)、不需要同步信号等特点,适用于在高功率微波干扰环境下的单次和高重复频率脉冲功率测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号