首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

2.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

3.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

4.
[1]J.Gasser,H.Leutwyler,and M.E.Sainio,Phys.Lett.B 253 (1991) 252. [2]John Ellis,Eur.Phys.J.A 24S2 (2005) 3,[arXive:hepph/0411369]. [3]T.Inoue,V.E.Lyubovitskij,Th.Gutsche,and Amand Faessler,Phys.Rev.C 69 (2004) 035207,[arXive:hepph/0311275]. [4]M.M.Pavan,I.I.Strakovsky,R.L.Workman,and R.A.Arndt,PiN Newslett.16 (2002) 110,[arXive:hepph/0111066]. [5]V.E.Lyubovitskij,Th.Gutsche,Amand Faessler,and E.G.Drukarev,Phys.Rev.D 63 (2001) 054026,[arXive:hep-ph/0009341]. [6]S.D.Bass,Phys.Lett.B 329 (1994) 358,[arXive:hepph/9404294]. [7]Marc Knecht,PiN Newslett.15 (1999) 108,[arXive:hepph/9912443]. [8]P.Schweitzer,Phys.Rev.D 69 (2004) 034003. [9]B.C.Lehnhart,J.Gegelia,and S.Scherer,J.Phys.G 31(2005) 89,[arXive:hep-ph/0412092]. [10]P.J.Ellis and K.Torikoshi,Phys.Rev.C 61 (1999)015205. [11]Gerald E.Hite,William B.Kaufmann,and Richard J.Jacob,Phys.Rev.C 71 (2005) 065201. [12]S.Weinberg,Physica A 96 (1979) 327. [13]J.Gasser and H.Leutwyler,Nucl.Phys.B 250 (1985)465. [14]J.Gasser,M.E.Sainio,and A.Svarc,Nucl.Phys.B 307(1988) 779. [15]P.Papazoglou,D.Zschiesche,S.Schramm,J.SchaffnerBielich,H.St(o)cker,and W.Greiner,Phys.Rev.C 59(1999) 411. [16]T.Fuchs and J.Gegelia,Phys.Rev.D 68 (2003) 056005.  相似文献   

5.
[1]M.Alford,K.Rajagopal,and F.Wilczek,Phys.Lett.B 422 (1998) 247; Nucl.Phys.B 537 (1999) 443. [2]M.Gyulassy and L.McLerran,arXiv:nucl-th/0405013;E.V.Shuryak,arXiv:hep-ph/0405066. [3]K.Rajagopal and F.Wilczek,hep-ph/0011333. [4]M.Alford,Chris Kouvaris,and K.Rajagopal,hepph/0406137. [5]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122 (1961)345. [6]R.T.Cahill and C.D.Roberts,Phys.Rev.D 32 (1985)2419. [7]R.T.Cahill and Susan M.Ganner,hep-ph/9812491. [8]A.W.Steiner,S.Reddy,and M.Prakash,Phys.Rev.D 66 (2002) 094007. [9]P.Amore,M.C.Birse,J.A.McGovern,and N.R.Walet,Phys.Rev.D 65 (2002) 074005. [10]M.Alford and K.Rajagopal,JHEP 0206 (2002) 031. [11]Xiao-Fu Li,Yu-Xin Liu,Hong-Shi Zong,and En-GuangZhao,Phys.Rev.C 58 (1998) 1195. [12]H.Reinhardt,Phys.Lett.B 244 (1990) 2. [13]Steven Weinberg,The Quantum Theory of Fields,Vol.2,Cambridge University Press,Cambridge (1996) p.348.  相似文献   

6.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

7.
《Physica A》2006,371(1):130-134
Investigations on diffusion in systems with memory [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] have established a hierarchical connection between mixing, ergodicity, and the fluctuation–dissipation theorem (FDT). This hierarchy means that ergodicity is a necessary condition for the validity of the FDT, and mixing is a necessary condition for ergodicity. In this work, we compare those results with recent investigations using the Lee recurrence relations method [M.H. Lee, Phys. Rev. B 26 (1982) 2547; M.H. Lee, Phys. Rev. Lett. 87 (2001) 250601; M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. Lee shows that ergodicity is violated in the dynamics of the electron gas [M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. This reinforces both works and implies that the results of [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] are more general than the framework in which they were obtained. Some applications to slow relaxation phenomena are discussed.  相似文献   

8.
通过介绍六粒子纠缠态的新应用研究,提出了一个二粒子任意态的信息分离方案.在这个方案中,发送者Alice、控制者Charlie和接受者Bob共享一个六粒子纠缠态,发送者先执行两次Bell基测量|然后控制者执行一次Bell基测量|最后接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,从而能够重建要发送的二粒子任意态.这个信息分离方案是决定性的,即成功概率为100%.与使用相同的量子信道进行二粒子任意态的信息分离方案相比,本文提出的方案只需要进行Bell基测量而不需要执行多粒子的联合测量,从而使得这个方案更简单、更容易,并且在目前的实验室技术条件下是能够实现的.  相似文献   

9.
We obtain a new relation between Green's functions of the time-dependent Schrödinger equation for stationary potentials and Green's functions of the same equation for certain time-dependent potentials. The relation obtained here emerges very easily from a transformation introduced by Ray [J.R. Ray, Phys. Rev. A26 (1982) 729] and generalizes former work of Dodonov, et al. [V.V. Dodonov, V.I. Man'ko, and D.E. Nikonov, Phys. Lett. A162 (1992) 359.]  相似文献   

10.
Quantum correlations in a family of two-qubit separable classical-quantum correlated states are intensively studied with four different approaches, namely, quantum discord [Phys. Rev. Lett. 88 (2002) 017901], measurement- induced disturbance (MID) [Phys. Rev. A 77 (2008) 022301], ameliorated MID [J. Phys. A: Math. Theor. 44 (2011) 352002] and quantum dissonance [Phys. Rev. Lett. 104 (2010) 080501]. Quantum correlations captured with different approaches are compared and discussed so that their three distinct features are exposed.  相似文献   

11.
Quantum correlations in a family of two-qubit separable classical-quantum correlated states are intensively studied with four diferent approaches,namely,quantum discord[Phys.Rev.Lett.88(2002)017901],measurementinduced disturbance(MID)[Phys.Rev.A 77(2008)022301],ameliorated MID[J.Phys.A:Math.Theor.44(2011)352002]and quantum dissonance[Phys.Rev.Lett.104(2010)080501].Quantum correlations captured with diferent approaches are compared and discussed so that their three distinct features are exposed.  相似文献   

12.
[1]C.O.Weiss and R.Vilaseca,Dynamics of Lasers,VCH,Weinheim (1991); Instabilities and Chaos in Quantum Optics,eds.F.T.Arecchi and R.G.Harrison,Springer-Verlag,Berlin (1987). [2]H.Haken,Phys.Lett.A 53 (1975) 77. [3]Ju Rui,Huang Hong-Bin,Yang Peng,Xie Xia,and Zhao Huan,Commun.Theor.Phys.(Beijing,China) 44 (2005) 65; Ju Rui,Zhang Ya-Jun,Huang Hong-Bin,and Zhao Huan,Acta Phys.Sin.53 (2004) 2191 (in Chinese). [4]C.Z.Ning and H.Haken,Z.Phys.B 77 (1989) 247; B 77 (1989) 157; B 77 (1989) 163; J.Zakrenwski and M.Lewenstein,Phys.Rev.A 45 (1992) 2057. [5]G.J.deValearcel,E.Roldan,and R.Vilaseca,Phys.Rev.A 45 (1992) R2674; Phys.Rev.A 49 (1994) 1243. [6]X.Xie,H.B.Huang,F.Qian,Y.J.Zhang,P.Yang,and G.X.Qi,Commun.Theor.Phys.(Beijing,China) 46 (2006) 1042. [7]X.L.Deng,H.Q.Ma,B.D.Chen,and H.B.Huang,Phys.Lett.A 290 (2001) 77. [8]C.Benkert,and M.O.Scully,Phys.Rev.A 42 (1990) 2817. [9]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge (1997).  相似文献   

13.
The statistical properties of the intermittent signal generated by a recent model for self-organized criticality are examined. A successful comparison is made with previously published results of the equivalent quantities measured in the electrostatic turbulence at the edge of a fusion plasma. This result reestablishes self-organized criticality as a potential paradigm for transport in magnetic fusion devices, overriding shortcomings pointed out in earlier works [E. Spada, Phys. Rev. Lett. 86, 3032 (2001)10.1103/PhysRevLett.86.3032; V. Antoni, Phys. Rev. Lett. 87, 045001 (2001)10.1103/PhysRevLett.87.045001].  相似文献   

14.
A recent paper [A.A. Krokhin, J. Arriaga, L.N. Gumen, Speed of sound in periodic elastic composites, Phys. Rev. Lett. 91 (2004) 264302-1-4] addresses the speed of sound in periodic elastic composites (phononic crystals) with particular emphasis to the case where air bubbles are present in water and arranged periodically. In such periodically arranged mixtures, the well-known phenomena of the drop of the speed of sound may occur and applications related to, e.g., sound-beam focusing and acoustic surgery are possible [F. Cervera, L. Sanchez, J.V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, J. Sanchez-Dehesa, Phys. Rev. Lett. 88 (2002) 023902]. In this paper, the analysis is extended theoretically to include cases where a background flow in a periodic structure is maintained. Calculations of dispersion relations and group velocities are presented in cases with one- and two-dimensional material periodicity for background flow values in the range: 0-1m/s. Materials considered in the calculations are periodic water-air mixtures. It is shown that acoustic waves couple to the group velocities only if the (acoustic) wave vector has a component along the background flow velocity direction.  相似文献   

15.
We propose a method of operating a quantum state machine made of stacked quantum dots buried in adjacent to the channel of a spin field-effect transistor (FET) [S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665; K. Yoh, et al., Proceedings of the 23rd International Conference on Physics of Semiconductors (ICPS) 2004; H. Ohno, K. Yoh et al., Jpn. J. Appl. Phys. 42 (2003) L87; K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134]. In this method, a spin blockade measurement extracts the quantum state of a nearest quantum dot through Coulomb blockade [K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134; K. Yoh, H. Kazama, Physica E 7 (2000) 440] of the adjacent channel conductance. Repeated quantum Zeno-like (QZ) measurements [H. Nakazato, et al., Phys. Rev. Lett. 90 (2003) 060401] of the spin blockade is shown to purify the quantum dot states within several repetitions. The growth constraints of the stacked InAs quantum dots are shown to provide an exchange interaction energy in the range of 0.01–1 meV [S. Itoh, et al., Jpn. J. Appl. Phys. 38 (1999) L917; A. Tackeuchi, et al., Jpn. J. Appl. Phys. 42 (2003) 4278]. We have verified that one can reach the fidelity of 90% by repeating the measurement twice, and that of 99.9% by repeating only eleven QZ measurements. Entangled states with two and three vertically stacked dots are achieved with the sampling frequency of the order of 100 MHz.  相似文献   

16.
We revisit the question whether the critical behavior of sandpile models with sticky grains is in the directed percolation universality class. Our earlier theoretical arguments in favor, supported by evidence from numerical simulations [P.K. Mohanty, D. Dhar, Phys. Rev. Lett. 89 (2002) 104303], have been disputed by Bonachela et al. [Phys. Rev. E 74 (2006) 050102] for sandpiles with no preferred direction. We discuss possible reasons for the discrepancy. Our new results of longer simulations of the one-dimensional undirected model fully support our earlier conclusions.  相似文献   

17.
There is evidence that spiral waves and their breakup underlie mechanisms related to a wide spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhythmias [A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001); J. Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 (1992); S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005); L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988); R. A. Gray et al., Science 270, 1222 (1995); F. X. Witkowski et al., Nature 392, 78 (1998)]. Once initiated, spiral waves cannot be suppressed by periodic planar fronts, since the domains of the spiral waves grow at the expense of the fronts [A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970); A. T. Stamp, G. V. Osipov, and J. J. Collins, Chaos 12, 931 (2002); I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996); K. J. Lee, Phys. Rev. Lett. 79, 2907 (1997); F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. E 59, 2203 (1999)]. Here, we show that introducing periodic planar waves with long excitation duration and a period longer than the rotational period of the spiral can lead to spiral attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several fronts, forming a variety of complex spatiotemporal patterns, which fall into two distinct general classes. Further, we find that these attenuation patterns only occur at specific phases of the descending fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-dependent spiral attenuation by performing numerical simulations of wave propagation in the excitable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe can lead to a general approach to spiral control in physical and biological systems with relevance for medical applications.  相似文献   

18.
Li Wang  Qinglu Wang 《Physics letters. A》2009,373(25):2193-2196
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of μm away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.  相似文献   

19.
《Physics letters. A》2004,321(1):34-49
In this Letter we establish the correspondence between Bogoyavlenskij symmetries [Phys. Lett. A. 291 (4–5) (2001) 256, Phys. Rev. E. 66 (5) (2002) 056410] of the MHD equilibrium equations and Lie point transformations of these equations. We show that certain non-trivial Lie point transformations (that are obtained by direct application of Lie method) are equivalent to Bogoyavlenskij symmetries.  相似文献   

20.
A self-energy-functional approach is applied to construct cluster approximations for correlated lattice models. It turns out that the cluster-perturbation theory [Phys. Rev. Lett. 84, 522 (2000)]] and the cellular dynamical mean-field theory [Phys. Rev. Lett. 87, 186401 (2001)]] are limiting cases of a more general cluster method. The results for the one-dimensional Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom, and cluster size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号