首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

2.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

3.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

4.
[1]J.Gasser,H.Leutwyler,and M.E.Sainio,Phys.Lett.B 253 (1991) 252. [2]John Ellis,Eur.Phys.J.A 24S2 (2005) 3,[arXive:hepph/0411369]. [3]T.Inoue,V.E.Lyubovitskij,Th.Gutsche,and Amand Faessler,Phys.Rev.C 69 (2004) 035207,[arXive:hepph/0311275]. [4]M.M.Pavan,I.I.Strakovsky,R.L.Workman,and R.A.Arndt,PiN Newslett.16 (2002) 110,[arXive:hepph/0111066]. [5]V.E.Lyubovitskij,Th.Gutsche,Amand Faessler,and E.G.Drukarev,Phys.Rev.D 63 (2001) 054026,[arXive:hep-ph/0009341]. [6]S.D.Bass,Phys.Lett.B 329 (1994) 358,[arXive:hepph/9404294]. [7]Marc Knecht,PiN Newslett.15 (1999) 108,[arXive:hepph/9912443]. [8]P.Schweitzer,Phys.Rev.D 69 (2004) 034003. [9]B.C.Lehnhart,J.Gegelia,and S.Scherer,J.Phys.G 31(2005) 89,[arXive:hep-ph/0412092]. [10]P.J.Ellis and K.Torikoshi,Phys.Rev.C 61 (1999)015205. [11]Gerald E.Hite,William B.Kaufmann,and Richard J.Jacob,Phys.Rev.C 71 (2005) 065201. [12]S.Weinberg,Physica A 96 (1979) 327. [13]J.Gasser and H.Leutwyler,Nucl.Phys.B 250 (1985)465. [14]J.Gasser,M.E.Sainio,and A.Svarc,Nucl.Phys.B 307(1988) 779. [15]P.Papazoglou,D.Zschiesche,S.Schramm,J.SchaffnerBielich,H.St(o)cker,and W.Greiner,Phys.Rev.C 59(1999) 411. [16]T.Fuchs and J.Gegelia,Phys.Rev.D 68 (2003) 056005.  相似文献   

5.
通过介绍六粒子纠缠态的新应用研究,提出了一个二粒子任意态的信息分离方案.在这个方案中,发送者Alice、控制者Charlie和接受者Bob共享一个六粒子纠缠态,发送者先执行两次Bell基测量|然后控制者执行一次Bell基测量|最后接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,从而能够重建要发送的二粒子任意态.这个信息分离方案是决定性的,即成功概率为100%.与使用相同的量子信道进行二粒子任意态的信息分离方案相比,本文提出的方案只需要进行Bell基测量而不需要执行多粒子的联合测量,从而使得这个方案更简单、更容易,并且在目前的实验室技术条件下是能够实现的.  相似文献   

6.
[1]M.Alford,K.Rajagopal,and F.Wilczek,Phys.Lett.B 422 (1998) 247; Nucl.Phys.B 537 (1999) 443. [2]M.Gyulassy and L.McLerran,arXiv:nucl-th/0405013;E.V.Shuryak,arXiv:hep-ph/0405066. [3]K.Rajagopal and F.Wilczek,hep-ph/0011333. [4]M.Alford,Chris Kouvaris,and K.Rajagopal,hepph/0406137. [5]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122 (1961)345. [6]R.T.Cahill and C.D.Roberts,Phys.Rev.D 32 (1985)2419. [7]R.T.Cahill and Susan M.Ganner,hep-ph/9812491. [8]A.W.Steiner,S.Reddy,and M.Prakash,Phys.Rev.D 66 (2002) 094007. [9]P.Amore,M.C.Birse,J.A.McGovern,and N.R.Walet,Phys.Rev.D 65 (2002) 074005. [10]M.Alford and K.Rajagopal,JHEP 0206 (2002) 031. [11]Xiao-Fu Li,Yu-Xin Liu,Hong-Shi Zong,and En-GuangZhao,Phys.Rev.C 58 (1998) 1195. [12]H.Reinhardt,Phys.Lett.B 244 (1990) 2. [13]Steven Weinberg,The Quantum Theory of Fields,Vol.2,Cambridge University Press,Cambridge (1996) p.348.  相似文献   

7.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

8.
《Physica A》2006,369(2):439-462
We discuss bounds on the values adopted by the generalized statistical complexity measures [M.T. Martin et al., Phys. Lett. A 311 (2003) 126; P.W. Lamberti et al., Physica A 334 (2004) 119] introduced by López Ruiz et al. [Phys. Lett. A 209 (1995) 321] and Shiner et al. [Phys. Rev. E 59 (1999) 1459]. Several new theorems are proved and illustrated with reference to the celebrated logistic map.  相似文献   

9.
[1]C.O.Weiss and R.Vilaseca,Dynamics of Lasers,VCH,Weinheim (1991); Instabilities and Chaos in Quantum Optics,eds.F.T.Arecchi and R.G.Harrison,Springer-Verlag,Berlin (1987). [2]H.Haken,Phys.Lett.A 53 (1975) 77. [3]Ju Rui,Huang Hong-Bin,Yang Peng,Xie Xia,and Zhao Huan,Commun.Theor.Phys.(Beijing,China) 44 (2005) 65; Ju Rui,Zhang Ya-Jun,Huang Hong-Bin,and Zhao Huan,Acta Phys.Sin.53 (2004) 2191 (in Chinese). [4]C.Z.Ning and H.Haken,Z.Phys.B 77 (1989) 247; B 77 (1989) 157; B 77 (1989) 163; J.Zakrenwski and M.Lewenstein,Phys.Rev.A 45 (1992) 2057. [5]G.J.deValearcel,E.Roldan,and R.Vilaseca,Phys.Rev.A 45 (1992) R2674; Phys.Rev.A 49 (1994) 1243. [6]X.Xie,H.B.Huang,F.Qian,Y.J.Zhang,P.Yang,and G.X.Qi,Commun.Theor.Phys.(Beijing,China) 46 (2006) 1042. [7]X.L.Deng,H.Q.Ma,B.D.Chen,and H.B.Huang,Phys.Lett.A 290 (2001) 77. [8]C.Benkert,and M.O.Scully,Phys.Rev.A 42 (1990) 2817. [9]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge (1997).  相似文献   

10.
In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy.  相似文献   

11.
Gan Gao 《Optics Communications》2009,282(22):4464-443
We find that, in the improvement [S.J. Qin et al., Phys. Lett. A 357 (2006) 101] of the multiparty quantum secret sharing [Z.J. Zhang et al., Phys. Rev. A 71 (2005) 044301], Charlie can solely obtain Alice’s secret messages without Bob’s helps. In other words, the improved secret sharing scheme is still insecure. In the end, we further modify Qin et al. improved three-party quantum secret sharing scheme and make it really secure.  相似文献   

12.
Li Wang  Qinglu Wang 《Physics letters. A》2009,373(25):2193-2196
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of μm away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.  相似文献   

13.
《Physics letters. A》2006,353(1):11-18
The breakdown of adiabatic approximation, demonstrated by Marzlin and Sanders [K.-P. Marzlin, B.C. Sanders, Phys. Rev. Lett. 93 (2004) 160408] and Tong et al. [D.M. Tong, et al., Phys. Rev. Lett. 95 (2005) 110407] for time-evolving “inverse” systems, is traced to the appearance of some nonzero terms in a perturbational treatment and is related to two time scales in the “inverse” systems' Hamiltonian. New adiabatic conditions of Ye et al. [M.-Y. Ye, et al., quant-ph/0509083] can restore the theoretical consistency.  相似文献   

14.
This paper generalizes the quantum clock synchronization protocol of Josza, et al., [Richard Jozsa, et al.,Phys. Rev. Lett. 85 (2000) 2010] to synchronize space and time simultaneously.  相似文献   

15.
We obtain a new relation between Green's functions of the time-dependent Schrödinger equation for stationary potentials and Green's functions of the same equation for certain time-dependent potentials. The relation obtained here emerges very easily from a transformation introduced by Ray [J.R. Ray, Phys. Rev. A26 (1982) 729] and generalizes former work of Dodonov, et al. [V.V. Dodonov, V.I. Man'ko, and D.E. Nikonov, Phys. Lett. A162 (1992) 359.]  相似文献   

16.
We propose a method of operating a quantum state machine made of stacked quantum dots buried in adjacent to the channel of a spin field-effect transistor (FET) [S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665; K. Yoh, et al., Proceedings of the 23rd International Conference on Physics of Semiconductors (ICPS) 2004; H. Ohno, K. Yoh et al., Jpn. J. Appl. Phys. 42 (2003) L87; K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134]. In this method, a spin blockade measurement extracts the quantum state of a nearest quantum dot through Coulomb blockade [K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134; K. Yoh, H. Kazama, Physica E 7 (2000) 440] of the adjacent channel conductance. Repeated quantum Zeno-like (QZ) measurements [H. Nakazato, et al., Phys. Rev. Lett. 90 (2003) 060401] of the spin blockade is shown to purify the quantum dot states within several repetitions. The growth constraints of the stacked InAs quantum dots are shown to provide an exchange interaction energy in the range of 0.01–1 meV [S. Itoh, et al., Jpn. J. Appl. Phys. 38 (1999) L917; A. Tackeuchi, et al., Jpn. J. Appl. Phys. 42 (2003) 4278]. We have verified that one can reach the fidelity of 90% by repeating the measurement twice, and that of 99.9% by repeating only eleven QZ measurements. Entangled states with two and three vertically stacked dots are achieved with the sampling frequency of the order of 100 MHz.  相似文献   

17.
We deal here with the issue of determinism versus randomness in time series (TS), withthe goal of identifying their relative importance in a given TS. To this end we extend (i)the use of ordinal patterns based probability distribution functions associated to a TS[C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)] and (ii) theso-called Amigó paradigm of forbidden/missing patterns [J.M. Amigó et al., Europhys. Lett.79, 50001 (2007)], to analyze deterministic finite TS contaminated withstrong additive noises of different correlation-degree. Useful information on thedeterministic component of the original time series is obtained with the help of theso-called causal entropy-complexity plane [O.A. Rosso et al., Phys. Rev. Lett.99, 154102 (2007)].  相似文献   

18.
This paper generalizes the quantum clock synchronization protocol of Josza, et al., [Richard Jozsa, et al.,Phys. Rev. Lett. 85 (2000) 2010] to synchronize space and thne simultaneously.  相似文献   

19.
EURISOL foil-targets have to withstand a primary proton beam of 1 GeV kinetic energy and up to 100 μA beam current. These foil targets will be based on previous high-power target concepts, i.e. the RIST target [J.R.J. Bennett et al., Nucl. Instrum. Meth. Phys. Res. B 126, 117 (1997)] or high power targets used at TRIUMF [P. Bricault et al., Nucl. Instrum. Meth. Phys. Res. B 204, 319 (2003), M. Dombsky et al., Nucl. Instrum. Meth. Phys. Res. B 204, 191 (2003)]. A single target unit is capable of dissipating up to 25 kW, hence, several target units can be merged together by individual transfer lines to one common ion source. The single target units will be irradiated by a proton beam in a time sharing mode to distribute the primary proton beam current to the individual target units. In this feasibility study the necessary properties of high-power foil targets are discussed and the requirements to design a foil target according to the proton beam parameters [CITE] for the future EURISOL facility are given.  相似文献   

20.
The atomic mass of 136Xe has been measured by comparing cyclotron frequencies of single ions in a Penning trap. The result, with 1 standard deviation uncertainty, is M(136Xe)=135.907 214 484 (11) u. Combined with previous results for the mass of 136Ba [Audi, Wapstra, and Thibault, Nucl. Phys. A 729, 337 (2003)10.1016/j.nuclphysa.2003.11.003], this gives a Q value (M[136Xe]-M[136Ba])c(2)=2457.83(37) keV, sufficiently precise for ongoing searches for the neutrinoless double-beta decay of 136Xe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号