首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A method is reported for the fabrication of wires with extended pore structures. Nanospheres are initially infiltrated into the one-dimensional channels of alumina or polymer porous membranes. Metal is then electrochemically deposited within the channels. Removal of the membrane and nanospheres results in porous wires. The production of 1-mum diameter wires with 300- or 500-nm diameter pores and 300-nm diameter wires with 140-nm pores illustrates the utility of this approach. Contacts between the spheres and the channel wall result in openings on the surface of the wires, and contacts between the spheres themselves produce openings between adjacent pores. Some short-range ordering of the spheres within the channels, as reflected in the wire pore structure, is evident. Characterization of the porous wires by electron microscopy is presented, and the potential applications of materials is discussed.  相似文献   

2.
The fabrication of small structured spherical particles that are essentially small photonic crystals is described. The particles are 1-50 microm in diameter and are porous with nearly close-packed monodisperse pores whose size is comparable to the wavelength of light. The solid matrix of the particles is titania, which provides a large refractive index contrast between the particle matrix and pores. The particles are made by encapsulating polymer colloidal particles in emulsion droplets of hexanes in which a titanium alkoxide precursor is dissolved. Subsequent osmotic removal of the hexanes from the droplets and condensation of the alkoxide precursor leads to spherical aggregates of polymer spheres with titania filling the spaces between the polymer spheres. The polymer particles are then burned out leaving behind the desired porous titania particles. The size and structure of the pores and high refractive index of the titania matrix are expected to produce particles that are very efficient scatterers of light, making them useful as pigments.  相似文献   

3.
We report on the integration of a size-based three-dimensional filter, with micrometre-sized pores, in a commercial microfluidic chip. The filter is fabricated inside an already sealed microfluidic channel using the unique capabilities of two-photon polymerization. This direct-write technique enables integration of the filter by post-processing in a chip that has been fabricated by standard technologies. The filter is located at the intersection of two channels in order to control the amount of flow passing through the filter. Tests with a suspension of 3 μm polystyrene spheres in a Rhodamine 6G solution show that 100% of the spheres are stopped, while the fluorescent molecules are transmitted through the filter. We demonstrate operation up to a period of 25 minutes without any evidence of clogging. Preliminary validation of the device for plasma separation from whole blood is shown. Moreover, the filter can be cleaned and reused by reversing the flow.  相似文献   

4.
We study adsorption in pores with curved hard walls that are made of two uniaxial cylinders by using a density functional approach. Two cases are considered: adsorption of hard spheres and adsorption of a Lennard-Jones fluid. In the case of hard spheres, we perform a comparison with the results of grand canonical ensemble Monte Carlo data. This comparison indicates that the applied approach is capable of reproducing the fluid structure quite satisfactorily. For hard spheres, we also make a comparison of the total adsorption effect (expressed as the average density of a confined fluid) inside pores with curved walls with that evaluated for a slitlike pore. We have found that the differences between adsorption in pores with curved walls and in slits with the same wall-to-wall distance are quite low. The calculations for the Lennard-Jones fluid have been concerned with the investigation of the capillary evaporation and with the evaluation of phase diagrams for different pores, including slitlike pores. We have found that the curvature of the pore walls shifts the transition toward lower values of the chemical potential and increases slightly the value of the critical temperature in comparison with the values obtained for a slitlike pore. Copyright 2000 Academic Press.  相似文献   

5.
Molten particles in a thermal spray land on a rough surface, coalesce with each other and freeze to form a coating. Surface tension prevents liquid splats from completely filling crevices in the substrate, forming pores. An analytical model is developed to estimate the volume of such pores by calculating the equilibrium shape of a liquid meniscus pressing down on a surface asperity. Predictions from the model are compared with experimental results for the volume of voids formed under plasma sprayed yttria stabilised zirconia (YSZ) particles (average diameter 18 μm) landing with an average velocity of 250 m/s on patterned silicon surfaces that had vertical posts on them. The model predicted, to within an order-of-magnitude, the volume of voids on a surface in which the posts were tall (3 μm high) and closely spaced (1 μm apart), where pores were principally formed by incomplete filling of gaps.  相似文献   

6.
We report a new method to control both the nucleation and growth of highly porous polyaniline (PANI) nanofiber films using porous poly(styrene-block-2-vinylpyridine) diblock copolymer (PS-b-P2VP) films as templates. A micellar thin film composed of P2VP spheres within a PS matrix is prepared by spin coating a PS-b-P2VP micellar solution onto substrates. The P2VP domains are swollen in a selective solvent of acetic acid, which results in the formation of pores in the block copolymer film. PANI is then deposited onto the substrates modified with such a porous film using electrochemical methods. During the deposition, the nucleation and growth of PANI occur only at the pores of the block copolymer film. After the continued growth of PANI by the electrochemical deposition, a porous PANI nanofiber film is obtained.  相似文献   

7.
We present drainage simulations that allow trapping of wetting phase in a simple but nontrivial granular medium, a dense random packing of equal spheres. The basis for the simulations is a network model derived directly from the known locations and dimensions of pore space features. This provides a means of evaluating the morphology of trapped wetting phase. The possible morphologies depend on the assumed connectivity of the wetting phase. At one extreme, we assume that the entire wetting phase except for pendular rings is connected. At the opposite extreme, we illustrate a low level of connectivity by assuming that pendular rings are trapped as soon as the pores surrounding them are drained; any wetting phase not yet drained from pore throats connecting these pores is also assumed to be trapped. Finally we consider a set of criteria involving larger neighborhoods within the network, which allows trapping in individual pores. Irreducible wetting phase saturations obtained in the latter case agree with experimental data. The numbers of pendular rings and liquid bridges are also consistent with observations. Because the agreement does not involve adjustable parameters, we conclude that a relatively simple, local evaluation of trapping criteria can yield physically representative wetting phase configurations.  相似文献   

8.
We report a new series of polyurethane–oligo(phenylenevinylene) (OPV) random copolymers and their self‐assembled nanomaterials such as pores, vesicles, and luminescent spheres. The polymers were synthesized through melt transurethane process by reacting a hydroxyl‐functionalized OPV with diurethane monomer and diol under solvent‐free and nonisocyanate conditions. The amount of OPV was varied up to 50 mol % in the feed to incorporate various amounts of π‐conjugated segments in the polyurethane backbone. The π‐conjugated segmented polymers were subjected to solvent induced self‐organization in THF or THF+water to produce variety of morphologies ranging from pores (500 nm to 1 μm) to spheres (100 nm to 2 μm). Upon shining 370‐nm light, the dark solid nanospheres of the copolymers transformed into blue luminescent nanoballs under fluorescence microscope. The mechanistic aspects of the self‐organization process were studied using solution FTIR and photophysical techniques such as absorption and emission to trace the factors which control the morphology. FTIR studies revealed that the hydrogen bonding plays a significant role in the copolymers with lower amount of OPV units. Time resolved fluorescent decay measurements of copolymers revealed that molecular aggregation via π‐conjugated segments play a major role in the samples with higher OPV content in the random block polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 46: 5897–5915, 2008  相似文献   

9.
Irregular porous carbon spheres were successfully prepared from Na2SnO3 coated corn porous starch by carbonization. The product was characterized with X-ray diffraction and scanning electron microscope (SEM). It is verified that the irregular porous carbon spheres are composed of disordered carbon, and the skeleton and pores of the corn porous starch was well preserved after carbonization. The pore size of the irregular porous carbon spheres is almost the same, which is similar to that of the porous starch. And the pore size decreases from about 0.91 μm to 0.53 μm measured from the SEM pictures. The texture of the irregular porous carbon spheres is mainly determined by that of porous starch.  相似文献   

10.
Extracorporeal membrane oxygenators are comprised of large bundles of microporous hollow fiber membranes (HFMs) across which oxygen and carbon dioxide are transferred to and from blood. Long term use of extracorporeal oxygenators is limited by plasma leakage through the pores of the HFM walls, requiring replacement of the oxygenator. Condensation of water vapor on the pore walls is thought to be a possible precursor to plasma leakage. To explore this mechanism, a simple theoretical analysis is used to examine the temperature of the gas flow through the HFMs. For conditions representative of two commercially available oxygenators, the analysis predicts that the gas heats up to the temperature of blood flow outside of the fibers after passing through less than 0.5% of the fiber lengths. Once the gas temperature and hence the fiber wall temperature equilibrates with the blood, condensation of water vapor is no longer possible. In vitro testing of microporous HFMs under gas flow rates and temperature conditions similar to those of extracorporeal oxygenators but with the fibers submerged in water is also presented. The fibers showed negligible degradation in carbon dioxide transfer over a four-day period. These results of both the theoretical and experimental analyses indicate that the condensation of water vapor within the pores of the HFMs is unlikely to be the cause of plasma leakage in clinically used extracorporeal oxygenators.  相似文献   

11.
The synthesis of highly nitrogen‐doped mesoporous carbon spheres (NMCS) is reported. The large pores of the NMCS were obtained through self‐polymerization of dopamine (DA) and spontaneous co‐assembly of diblock copolymer micelles. The resultant narrowly dispersed NMCS possess large mesopores (ca. 16 nm) and small particle sizes (ca. 200 nm). The large pores and small dimensions of the N‐heteroatom‐doped carbon spheres contribute to the mass transportation by reducing and smoothing the diffusion pathways, leading to high electrocatalytic activity.  相似文献   

12.
In summary, we have developed a new strategy for the fabrication of arrayed colloidal particles well-ordered nanometric holes of three or four fold symmetry by anisotropic reactive ion (plasma) etching of self-organized layers of colloidal spheres. We demonstrated that a mesoporous silica matrix with regular open windows could be used as a lithographic mask and the resulting arrangement of pores on a particle was dependent on the orientation of the colloidal particle stacking. A variety of organic and inorganic materials such as metals for metal-polymer composites, DNA and proteins, semiconducting and ceramic materials, and other polymers and small chemicals can be incorporated via chemical and physical attachment. Particles with patterned pores and composite particles by our nanomachining process can be used as novel functional materials in the field of electronics, photonics, and biotech areas.  相似文献   

13.
In the bulk, at equilibrium, diblock copolymers microphase separated into nanoscopic morphologies ranging from body-centered cubic arrays of spheres to hexagonally packed cylinders to alternating lamellae, depending on the volume fraction of the components. However, when the block copolymers are forced into cylindrical pores, where the diameter of the pores are only several repeat periods of the copolymer morphology or less, then commensurability of the copolymer period and the pore diameter can impose a frustration on the microdomain morphology. In addition, due to the small pore diameter, a curvature is forced on the microdomain morphology. In combination with interfacial interactions between the blocks of the copolymer and the pore walls, the preferential segregation of one component to the walls, spatial confinement and forced curvature are shown to induce transitions in the fundamental morphology of the copolymers seen in the bulk. Lamellar morphologies transformed into torus-type morphologies, cylinders are forced into helices, and body-centered cubic arrays of spheres are force into helical arrays of spheres due to these restraints. The novel morphologies, not accesssible in the bulk, open a large array of nanoscopic structures that can be used as templates and scaffolds for the fabrication of inorganic nanostructured materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3377–3383, 2005  相似文献   

14.
The methods of calculating meniscus curvatures given by Mayer and Stowe and also independently by Princen are essentially the same. The method is exact for pores defined by rods. From comparison with experimental results, the method provides, for zero contact angle at least, a close approximation for pores defined by spheres. The application of the method to model pores defined by rods and spheres is discussed with particular attention being paid to the effects of neighboring pores. The merits of defining the neighbors of a particular pore as mirror images are discussed together with the effect of neighboring pores on the determination of pore sizes from capillary displacement curvatures. Meniscus curvatures of a family of pore shapes defined by three equal rods and mirror image neighbors are tabulated. A simple correlation was found between these values and estimates of the curvature given by the Haines incircle approximation.  相似文献   

15.
Germanium is electrodeposited in a template formed from a dried suspension of silica spheres. The germanium completely fills the pores of the silica matrix. The semiconductor, as deposited, is amorphous but can be crystallized by annealing. Selective dissolution of the silica template gives a macroporous germanium-air sphere matrix, which offers interesting possibilities for photonic applications.  相似文献   

16.
The electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) films from aqueous surfactant solution through a two-dimensional poly(styrene) (PS) template onto indium tin oxide (ITO) substrate has been investigated. The polymer grows in the interstitial spaces of the self-assembled PS spheres which were subsequently removed by dissolution in tetrahydrofuran (THF). Surface characterization by scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveals that two-dimensional nanoporous honeycomb PEDOT structures can easily be obtained by using PS spheres of different sizes. Gold electrodeposition onto the nanostructured PEDOT electrode was investigated and SEM images show preferential formation of nanoparticles (NP) on the wall and the rim of the PEDOT film but metal clusters inside the pores are also observed.  相似文献   

17.
在碱性条件下,利用十六烷基三甲基溴化铵(CTAB)为结构导向剂,以含氨基有机硅烷与过渡金属离子Co(Ⅱ)形成的配合物Co(Ⅲ)-APTMOS为金属离子前驱体,合成了含金属元素钴的介孔Co-SiO2微球.运用XRD,TEM以及N2-吸附等技术对所制备的产物进行了表征.结果表明,产物为具有高比表面、孔道无序的介孔微球.同时阐述了金属离子以配合物Co-APTMOS形式加入反应体系的优越性.  相似文献   

18.
采用垂直沉积法组装了平均球径为188 nm的三维有序二氧化硅微球阵列。以该阵列为模板,通过在TiO2前驱体溶胶中多次浸渍热处理循环,随后采用超声辅助的NaOH溶液腐蚀去除硅球模板,制备了>20层厚的反转结构的二氧化钛多孔膜。该二氧化钛薄膜在550 ℃下热处理20 h其多孔结构保持不变,表明采用此方法制备的二氧化钛多孔膜具有较好的热稳定性。X射线衍射图表明550 ℃下热处理得到的是具有锐钛矿结构的二氧化钛多孔膜。透光光谱显示了光子带隙出现在~400 nm。通过SEM观察,二氧化钛多孔膜  相似文献   

19.
自然界中许多物质经千万年发展进化,具有特殊结构,决定了它们具有奇异特性.人们对此过程非常关注,试图了解其结构性能关系,从而实现人工合成,仿生学应此而产生.比如天然蛋白石能呈现出鲜艳颜色,其原因在于单分散二氧化硅微球与具有选择性吸收光的某些金属氧化物微粒形成了有序的超晶格结构[1].为了模拟此过程,人们以单分散二氧化硅或聚苯乙烯微粒形成的胶体晶作为模板,实现蛋白石的人工合成[2].可以说,模板合成技术是制备有序材料的有效手段.本文以单分散聚苯乙烯乳胶室温形成的有序膜为模板,采用快速溶胶凝胶方法,制备了聚苯乙烯/二氧化硅…  相似文献   

20.
Core-shell structured dual-mesoporous silica spheres (DMSS) that possess smaller pores (2.0 nm) in the shell and larger tunable pores (12.8-18.5 nm) in the core have been successfully synthesized by utilizing an amphiphilic block copolymer (polystyrene-b-poly (acrylic acid), PS-b-PAA) and cetyl trimethyl ammonium bromide (CTAB) as cotemplates. The thickness of the shells and the larger pore size in the core could be easily tuned by changing the amounts of TEOS and the hydrophobic block (PS) length during synthesis, respectively. By encapsulating hydrophobic magnetite nanoparticles into the cores, superparamagnetic dual-mesoporous silica spheres were obtained. Drug storage and release testing results showed that the diffusing rate of the stored drug could be efficiently controlled by changing the shell thickness of DMSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号