首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Arslan  N. Eskin 《实验传热》2015,28(5):430-445
In this study, condensation of pure refrigerant R134a vapor inside a smooth vertical tube was experimentally investigated. The test section was made of a copper tube with inside diameter of 7.52 mm and length of 1 m. Experimental tests were conducted for mass fluxes in the range of 20–175 kg/m2s with saturation pressure ranging between 5.8 and 7 bar. The effects of mass flux, saturation pressure, and temperature difference between the refrigerant and tube inner wall (ΔT) on the heat transfer performance were analyzed through experimental data. Obtained results showed that average condensation heat transfer coefficient decreases with increasing saturation pressure or temperature difference (ΔT). In addition, for the same temperature difference (ΔT), heat can be removed from the refrigerant at a higher rate at relatively low pressure values. Under the same operating conditions, it was shown that average condensation heat transfer coefficient increases as mass flux increases. Finally, the most widely used heat transfer coefficient correlations for condensation inside smooth tubes were analyzed through the experimental data. The best fit was obtained with Akers et al.'s (1959) correlation with an absolute mean deviation of 22.6%.  相似文献   

2.
G. Arslan  N. Eskin 《实验传热》2013,26(6):707-720
In this study, condensation of pure refrigerant R134a vapor inside a vertical 18° helical microfin tube was experimentally investigated. Tests were performed at saturation pressure of 5.7–5.9 bar with mass fluxes of 20–100 kg/m2s and heat fluxes of 1.7–5.3 kW/m2. The effects of mass flux and the temperature difference between the refrigerant and tube wall (ΔT) on the heat transfer performance were analyzed throughout experimental data. For experiments in which ΔT is more than 2.5°C, the average condensation Nusselt number showed a tendency to be independent from ΔT. Heat transfer enhancement ratio was found to be 1.59–1.71, which is always higher than the heat transfer area enhancement factor (1.55). Fins always act as a turbulence promoter in the given experimental data range. Finally, the most widely used heat transfer coefficient correlations for condensation inside microfin tubes were analyzed through the experimental data. Best fit was obtained with Yu and Koyama's correlation with an absolute mean deviation of 17% and Kedzierski and Goncalves's correlation with an absolute mean deviation of 19%.  相似文献   

3.
The two-phase heat transfer coefficients of R404A and R134a in a smooth tube of 7.49-mm inner diameter were experimentally investigated at low heat and mass flux conditions. The test section is a 10-m-long counter-flow horizontal double-tube heat exchanger with refrigerant flow inside the tube and hot fluid in the annulus. The heat transfer coefficients along the length of the test section were measured experimentally under varied heat flux conditions between 4 and 18 kW m?2 and mass flux ranging between 57 and 102 kg m?2 s?1 (2.5 to 4.5 g s?1) for saturation temperatures of ?10°C, ?5°C, and 0°C. The saturation temperatures correspond to pressures of 4.4, 5.2, and 6.1 bar for R404A and 2.0, 2.4, and 3.0 bar for R134a, respectively. The results showed that under the tested conditions, the contribution of the nucleate boiling mechanism is predominant in the heat transfer coefficient throughout the flow boiling process. The Kattan–Thome–Favrat flow pattern maps confirm the occurrence of stratified and stratified-wavy flow patterns for all of the tested conditions. The average heat transfer coefficient of R404A is estimated to be 26 to 30% higher than that of R134a for the same saturation temperature.  相似文献   

4.
In this study, heat transfer coefficients and pressure drops of R-134a inside round and flat tubes are investigated experimentally with mass flux of 450, 550, and 650 kg m?2 s?1 at saturation temperatures of 35°, 40°, and 45°C. The effects of mass flux and saturation temperature on heat transfer coefficient and pressure drop are examined. The maximum enhancement factor and pressure drop penalty are obtained by flat tube (FT-2) up to 2.101 at 450 kg m?2 s?1 and 3.01 at 650 kg m?2 s?1, respectively. The correlation for flat tubes is proposed to predict the heat transfer coefficient within ±20% error.  相似文献   

5.
This study reports an experimental investigation of evaporative heat transfer and pressure drop of R-134a flowing downward inside vertical corrugated tubes with different corrugation pitches. The double tube test section is 0.5 m long with refrigerant flowing in the inner tube and hot water flowing in the annulus. The inner tubes are comprised of one smooth tube and three corrugated tubes with different corrugation pitches of 6.35, 8.46, and 12.7 mm. The test runs are performed at evaporating temperatures of 10°C, 15°C, and 20°C; heat fluxes of 20, 25, and 30 kW/m2; and mass fluxes of 200, 300, and 400 kg/m2s. The experimental data obtained from the smooth tube are plotted with flow pattern map for vertical flow. Comparisons between smooth and corrugated tubes on the heat transfer and pressure drop are also discussed. It is observed that the heat transfer coefficient and frictional pressure drop obtained from the corrugated tubes are higher than those from the smooth tube. Furthermore, the heat transfer coefficient and frictional pressure drop increase as the corrugation pitch decreases. The maximum heat transfer enhancement factor and penalty factor are up to 1.22 and 4.0, respectively.  相似文献   

6.
This article directly investigates the effect of a cooling medium's coolant temperature on the condensation of the refrigerant R-134a. The study presents an experimental investigation into condensation heat transfer, vapor quality, and pressure drop of R-134a flowing through a commercial annular helicoidal pipe under the severe climatic conditions of a Kuwait summer. The quality of the refrigerant is calculated using the temperature and pressure obtained from the experiment. Measurements were performed for refrigerant mass fluxes ranging from 50 to 650 kg/m2s, with a cooling water flow Reynolds number range of 950 to 15,000 at a fixed gas saturation temperature of 42°C and cooling wall temperatures of 5°C, 10°C, and 20°C. The data shows that with an increase of refrigerant mass flux, the overall condensation heat transfer coefficients of R-134a increased, and the pressure drops also increased. However, with the increase of mass flux of cooling water, the refrigerant-side heat transfer coefficients decreased. Using low mass flux in a helicoidal tube improves the heat transfer coefficient. Furthermore, selecting low wall temperature for the cooling medium gives a higher refrigerant-side heat transfer coefficient.  相似文献   

7.
实验研究了环保替代制冷工质R410A、R22在水平强化管内冷凝换热特性,探索了热流密度、水流速度对换热特性、压降的影响。实验测试管为内螺纹强化管,长度为5.2 m,外径为9.52 mm。实验结果表明:制冷剂R410A、R22的传热系数和压降随热流密度的增大而增大,同时内螺纹管的换热系数还随管外冷却水流量的增加而升高,压降随冷凝温度的升高而降低,而R410A比R22有更好的换热效率和较小的压降。  相似文献   

8.
R410A与R22在水平微翅管内流动沸腾传热特性研究   总被引:2,自引:0,他引:2  
建立了水平管流动沸腾试验台,采用恒热流加热方法,对 R410A 在水平微翅管内流动沸腾特性进行了实验研究,分析了影响 R410A 在水平微翅管内换热系数的因素,考察了工质质量流量、热流密度、质量干度以及微翅管的几何参数对工质的流动沸腾换热性能的影响关系.通过对比 R410A 与 R22 的实验数据,分析比较二者的换热系数,结果表明R410A 与 R22 相差不大,R22 比 R410A 的换热系数大约高 7.5%.  相似文献   

9.
对于非共沸混合制冷剂R410A在外径9.52mm、5mm的两种不同的几何参数的内螺纹的流动沸腾换热进行了实验研究,分析讨论了制冷剂质量流速、管外水流量变化、强化管的参数、强化管的压降对换热系数影响以及其机理。试验的结果表明:换热系数随着流量的增大而增大,管径的大小对换热系数的影响较大,在相同的流量下,9.52mm的换热系数比5mm的大到110%~230%,5mm管的压降比9.52mm的大200%~300%。  相似文献   

10.
在水平管外沸腾换热实验中,热流密度沿管长方向的变化幅度较大,采用Wilson方法所得到的管内对流换热系数偏高,而管外沸腾换热系数偏低.为解决这一问题,本文提出了一种新的数据处理方法-局部换热系数法,并采用这种方法对实验测定R134a在水平放置的机械加工强化表面沸腾传热管的实验数据进行分析和处理,得到了较合理的结果.  相似文献   

11.
本文对R134a在板式换热器内的凝结换热特性进行了实验研究,通过测量换热器中冷却水及板壁温度获得了局部凝结换热系数随蒸气干度、质量流量及热流密度的变化关系.实验结果表明,凝结换热系数随着蒸气干度增加而增加.文章还将实验结果与部分文献数据进行了比较与分析.本文的研究为换热准则关系式的发展提供了实验数据.  相似文献   

12.
对氟利昂 R123 在水平单管外的凝结换热性能进行了试验研究,试验管为光管和五根强化管.目的是获得不凝气体对 R123 蒸气凝结时最佳肋密度的影响.试验结果表明:光管管外 Nusselt 理论值与实验数据偏差在±5%以内.对于含 8%不凝气体的 R123 在低肋管外的凝结换热,在肋密度为 1475 翅/米时可以获得最佳的换热性能.含不凝气体的 R123凝结换热系数显著下降,其管外换热系数约为纯蒸气的 20%~25%.随着肋密度的减小,不凝气体对凝结换热的影响逐渐减弱,但其最佳肋间隙仍保持不变,均为 0.32 mm.  相似文献   

13.
This paper presents an experimental study of flow boiling heat transfer characteristics of refrigerant mixture R-22/R-114 in the annuli of a horizontal enhanced surface tubing evaporator. The geometric parameters of the test section are: inner tube bore diameter of 17.5 mm, envelope diameter of 28.6 mm and outer smooth tube of 32.3 mm I.D. The ranges of heat flux and mass velocity covered in the tests were 5–25 kW m−2 and 180–290 kg m2−s−1 respectively, at a pressure of 570 kPa. The enhanced surface tubing data showed a significant enhancement of the heat transfer compared to an equivalent smooth tube depending on the mixture's components and their concentrations. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients as well as pressure drops of R-22/R-114 non-azeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.  相似文献   

14.
Boiling heat transfer in a refrigerant R 21 flow in a microchannel heat sink is studied. A stainless steel heat sink with a length of 120 mm contains ten microchannels with a size of 640×2050 μm at cross-section with a wall roughness of 10 μm. The local heat-transfer coefficient distribution along the heat sink length is obtained. The ranges of parameters are: mass flow from 68 to 172 kg/m2s, heat fluxes from 16 to 152 kW/m2, and vapor quality from 0 to 1. The maximum values of the heat transfer coefficient are observed at the inlet of microchannels. The heat transfer coefficients decrease substantially along the length of channels under high heat flux conditions and, on the contrary, change insignificantly under low heat flux condition. A comparison with the well-known models of flow boiling heat transfer is performed and the range of applicability is defined.  相似文献   

15.
1前言前文山提出了计算环状流和波状分层流型下非共沸混合工质在水平管内凝结的换热系数的折算方法。租界面温度Ti的取值对计算结果影响很大。现在常用的方法是根据液膜和气相区传热传质的经验公式确定问,不仅计算工作量大,且无公认的计算方式。这给工程计算带来许多不便。本文取Ti二(Tv十几w,即气相温度Tv和壁面温度见的算术平均值,以计算相界面上的平衡参数,并将前文中的折算因子计算式改为如下形式:对环状流将由于相界面温度的取法所引起的误差归于用实验数据确定的经验系数A、B与经验指数p、q。式中Ja为雅各布数,无量纲温度0…  相似文献   

16.
细圆管内流动凝结换热的实验研究   总被引:2,自引:1,他引:1  
通过实验,分析细圆管的倾斜角度和管径对管内蒸气流动凝结换热的影响。利用实测的管壁温度变化。估计凝结液沿周向的分布。探讨不同倾角和管径条件下;重力作用影响凝结换热的机制。研究表明,在小尺度下,重力的影响受蒸气剪切力和表面张力作用而削弱,现有通行的关联式不适用于细圆管内的凝结换热。  相似文献   

17.
Heat transfer with vapor condensation inside a longitudinally finned tube is numerically studied. The proposed model considers vapor condensation on two initial flow areas, namely, annular and rivulet. The model allows prediction of pressure difference along the tube length, vapor velocity profiles in the central channel and an interfin groove, and also a velocity profile in the condensate rivulet at the bottom of the interfin channel, local heat transfer coefficients at different fin points, and average heat transfer coefficients over tube section and length. The calculations showed that in the case of vapor condensation in longitudinally finned tubes of a small diameter it is of fundamental importance to divide the flow tube section into a central channel and interfin channels. The governing vapor velocities in these channels may differ by more than an order of magnitude. The reduced vapor velocity, used in engineering calculations, does not reflect the character of dynamic vapor impact on a condensate film on the most part of the heat transfer surface. For tubes with relatively large fins the proposed model describes vapor condensation almost completely,meanwhile, the mass vapor quality by the time of filling of the grooves reaches 0.01–0.05. The highest heat transfer intensification was obtained for “sharp fins” with a high value of the fin head curvature. Comparison of results of calculation by the model with results of the known experiments on water vapor condensation yields a good qualitative and quantitative agreement for low vapor velocities at the channel inlet (under 30 m/s). The wall thermal conductivity coefficient value affects significantly the condensation efficiency.  相似文献   

18.
水平三维肋管管外凝结换热实验与分析(I实验研究)   总被引:4,自引:0,他引:4  
本文对不同饱和蒸汽温度下R11在水平Thermoexcel-C管的管外凝结换热性能进行了实验研究。实验结果表明:随着饱和蒸汽温度的提高,C管的凝结换热系数下降。C管凝结换热强化的主要机理在于孤立三维齿结构增大了表面张力减薄凝结表面液膜厚度的作用,而C管凝液淹没区小于相同肋间距的低肋管,且在淹没区内的凝结换热大于低肋管。  相似文献   

19.
实验研究了环保替代制冷工质R410A和R22在冷凝温度40℃时在内螺纹强化管(外径为9.52mm)内的冷凝换热特性,对二者的冷凝换热性能进行了对比,并研究了测试管外冷却水流量对换热系数的影响。结果表明:在管外冷却水流量相同时,R22的总换热系数K普遍比R410a小,而管内传热系数hr比R410A大。R22与R410A的总传热系数K均随管外冷却水流量的增加而增加,当制冷剂流量Gm大于300kg.s-1.m-2时,管外冷却水流量对总传热系数K的影响变小。  相似文献   

20.
Abstract

A test rig and measurement techniques for horizontal flow boiling of pure and mixed refrigerants are described. Local heat transfer coefficients were measured for R22/R114 and R12/R152a mixtures as well as the corresponding pure components. The test section consists of an S-m-long, 9.1-mm-i.d., electrically heated stainless steel tube and has the distinctive feature of variable heated length. Details of pressure, composition, and fluid and wall temperature measurements are discussed. The composition of subcooled liquid entering test section varied from test to test, and it is recommended that it be measured for each test. For the R22/R114 mixture, local composition measurements in the annular liquid film revealed a composition variation of up to 0.07 mole fraction around the circumference of the heated tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号