首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of multiple extrusions on nanostructure and properties of nylon 6 nanocomposites was investigated. Nanocomposites at different silicate loadings were produced by melt compounding and submitted to further reprocessing by using single and twin screw extruders. Rheological, morphological and mechanical analyses were carried out on as-produced and reprocessed samples in order to explore the influence of the number and the type of extrusion cycles on silicate nanodispersion.Rheological measurements, correlated to TEM analyses, were used to probe the nanoscale arrangement developed with the reprocessing as well as the thermo-mechanical degradation involving both the neat matrix and the organoclay. The results have shown that the reprocessing by single screw extruder can modify the initial morphology since the re-agglomeration of the silicate layers can occur. On the other hand, a better nanodispersion was observed in the hybrids reprocessed by twin screw extruder. This was attributed to the additional mechanical stresses able to realizing a dispersive mixing that contributes to avoid re-agglomeration phenomena. The high shear stresses produced with twin screw geometry determined also a significant degradation of neat matrix, principally based on chain scission mechanism.A strong correlation between the rheological behaviour and mechanical properties was observed and all as-produced and reprocessed hybrids showed a substantial enhancement in tensile modulus with the adding of silicate. However, the entity of performance enhancements displayed by the reprocessed hybrids was found to be highly dependent on the degradation of both organoclay and polymer matrix as well as the silicate amount, the number and the type reprocessing.  相似文献   

2.
A polymer-clay nanocomposite based on Poly(butyleneterephthalate) (PBT) and an innovative organoclay has been synthesized via intercalation of Bis(hydroxyethyl terephthalate) (BHET) in Na-Montmorillonite layers. Chemical and physical properties of this nanocomposite have been studied in comparison to other PBT/nanocomposites based on two commercial organoclay: Cloisite 25A and Somasif MEE. Nanocomposites have been prepared via melt compounding using a twin-screw extruder, with extrusion rate of 150 rpm. Samples were characterized by using wide-angle X-ray diffraction, TEM, thermal and mechanical analysis.  相似文献   

3.
The degradation of polystyrene nanocomposite was carried out by mechanical recycling after multiple processing of thermo-oxidative ageing. It was found that the degradation of the quaternary salt present in the clay promotes degradation of the polymer. The clay exfoliation was affected by the nanocomposite degradation process as well as the dipolar interactions of polymer chains, which influences the physical and mechanical properties of the final nanocomposite. NMR is a powerful tool for the characterization at the molecular level; it is sensitive to variations in local segmental and global movements. The correlation between NMR relaxation and rheological analyses in polymer nanocomposites was observed. This study aims to understand the complex effects of degradation in polymeric systems containing nanoparticles. Several 1H NMR relaxation parameters were analyzed. From the base line of the domain curves, the dipolar interaction phenomenon in polystyrene chains was investigated. The polymer chain heterogeneity was determined quantitatively from the MSE-FID, using a combination of Abragamian, Gaussian and exponential functions to fit experimental data. At least three domains: rigid, intermediate and mobile phases were identified based on the molecular mobilities.  相似文献   

4.
Polypropylene has been compounded with a commercial organoclay both in the absence and in the presence of hydrogenated oligo(cyclopentadiene) (HOCP) as a compatibiliser. The characteristics and the properties of the nanocomposites were evaluated and compared. HOCP favours the intercalation of the polypropylene in the organoclay galleries and enables a more homogeneous dispersion of the nanoclay throughout the polymer matrix. In the compatibilised nanocomposite, the diluent effect ascribed to the HOCP component is associated with the nucleating action of the nanoclay, resulting in the development of the β-crystalline form of the polypropylene. The presence of HOCP preserves the molecular weight of the polymer during the processing and gives good overall mechanical properties to the compatibilised nanocomposite. The thermo-oxidative degradation of the polypropylene is strongly delayed in the compatibilised nanocomposite.  相似文献   

5.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

6.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

7.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay.  相似文献   

8.
Nanocomposites based on biodegradable poly(?-caprolactone) organo-modified clay have been prepared by melt intercalation using a twin-screw extruder. The screw configuration developed allowed us to obtain an intercalated/exfoliated nanocomposite structure using a modified montmorillonite containing no polar groups, in contrast to previous work using mainly alkyl ammonium containing hydroxyl polar groups in poly(?-caprolactone). Montmorillonite nanocomposites were prepared using a specific extrusion profile from a 30 wt% masterbatch of organo-modified clay, which was then diluted at 1, 3 and 5%. Intercalated and/or exfoliated nanocomposites structures were assessed using rheological procedures and confirmed by transmission electron microscopy analysis. Mechanical and thermal properties were found to be strongly dependent on morphology and clay percentage. Crystallinity was only slightly affected by the clay addition. Effect of exfoliation on Young's modulus and thermal stability was investigated. Young's modulus increased significantly and onset degradation temperature measured by TGA was significantly reduced for an exfoliated nanocomposite composition containing 5 wt% organoclay.  相似文献   

9.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

10.
A multi-scale study of the dispersion state of PP/organoclay and PP-g-MA/organoclay composite was performed. Microscopic investigation, WAXS diffractograms and rheological analysis were used to characterize the dispersion of organoclay in PP and PP-g-MA matrices during melt blending in different morphological scales: from nano- to bulk-scale. The results show a system of aggregating intercalated clay particles which disperse with increasing mixing time with a strain-controlled process for PP-g-MA/organoclay nanocomposite, whilst PP/organoclay samples only form microcomposites.  相似文献   

11.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

12.
PP/PP‐g‐MA/MMT/EOR blend nanocomposites were prepared in a twin‐screw extruder at fixed 30 wt % elastomer and 0 to 7 wt % MMT content. Elastomer particle size and shape in the presence of MMT were evaluated at various PP‐g‐MA/organoclay masterbatch ratios of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by maleated polypropylene serves to reduce the size of the elastomer dispersed phase particles and facilitates toughening of these blend nanocomposites. The rheological data analysis using modified Carreau‐Yasuda model showed maximum yield stress in extruder‐made nanocomposites compared with nanocomposites of reactor‐made TPO. Increasing either MMT content or the PP‐g‐MA/organoclay ratio can drive the elastomer particle size below the critical particle size below which toughness is dramatically increased. The ductile‐brittle transition shift toward lower MMT content as the PP‐g‐MA/organoclay ratio is increased. The D‐B transition temperature also decreased with increased MMT content and masterbatch ratio. Elastomer particle sizes below ~1.0 μm did not lead to further decrease in the D‐B transition temperature. The tensile modulus, yield strength, and elongation at yield improved with increasing MMT content and masterbatch ratio while elongation at break was reduced. The modified Mori‐Tanaka model showed better fit to experimental modulus when the effect of MMT and elastomer are considered individually. Overall, extruder‐made nanocomposites showed balanced properties of PP/PP‐g‐MA/MMT/EOR blend nanocomposites compared with nanocomposites of reactor‐made TPO. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Liquid crystal polymer (LCP) composites filled with sepiolite and glass microcapsules were prepared by melt compounding. The composites were extruded using a twin-screw extruder and injection-molded. The objective of this study is to check a possibility of producing a polymeric composite with a low dielectric constant. Physical characteristics of the composites, such as morphological, rheological, mechanical, and electrical properties were analyzed. In particular, the glass microcapsule-reinforced LCP composites showed a significant improvement in lowering the dielectric constant due to its high air content. Additionally, sepiolite could act as an effective filler to improve the mechanical properties of the composites.  相似文献   

14.
在恒定剪切速率下,利用旋转流变仪研究端羧基聚丁二烯/蒙脱土纳米复合凝胶的流变行为,同时利用X-射线衍射(XRD)和透射电镜(TEM)等表征手段研究其微观结构.研究结果表明,该体系在26~116℃的升-降温过程中,观察到不可逆转变和可逆转变两种流变行为,其中不可逆转变流变行为归因于蒙脱土片层的剥离过程,而可逆转变流变行为...  相似文献   

15.
Polymer gels as soft biomaterials have found diverse applications in biomedical field, e.g. in management and care of wound as wound dressing.The recent researches on nanocomposite materials have shown that some properties of polymers and gels significantly improve by adding organoclay into polymeric matrix. In this work, in order to obtain wound dressing with better properties, nanocomposite hydrogel wound dressing was prepared using combination of polyvinyl alcohol hydogel and organoclay, i.e. Na-montmorillonite, via the freezing-thawing method. The effect of organoclay quantity on the structural, swelling, physical and mechanical properties of nanocomposite hydrogel wound dressing was investigated. The results showed that the nanocomposite hydrogels could meet the essential requirements for the reasonable wound dressing with some desirable characteristics such as relatively good swelling, appreciated vapour transmission rate, excellent barrierity against microbe penetration and mechanical properties. The results also indicated that the quantity of the clay added to the nanocomposite hydrogel is the key factor in obtaining such suitable properties required for wound dressing.  相似文献   

16.
Rubber compounds based on styrene-butadiene rubber/ethylene propylene diene monomer blends of different compositions (60/40, 70/30, 80/20, 90/10, 100/0) reinforced with 1 wt%, 3 wt%, 5 wt% and 7 wt% organoclay (Cloisite 20A) were prepared on a two roll mill via a vulcanization process and characterized by several techniques. Results of X-ray diffraction showed expansion of the inter-gallery distance, and transmission electron microscopy (TEM) micrographs confirmed that the prepared nanocomposite samples have intercalated and partially exfoliated structures. Cure characteristics showed that, organoclay not only accelerates the vulcanization reaction, but also gives rise to a marked increase of the torque, indicating crosslink density of the prepared compounds increases at the presence of organoclay. Mechanical properties of samples received markedly increase by clay loading due to the good interaction established between nanoclay particles and polymer matrix as it was evidenced by SEM photomicrographs. At the same time, rheological properties showed that addition of nanoclay could improve storage modulus as well as complex viscosity of SBR/EPDM samples. The results of ozone test revealed that the ozone resistance of samples significantly increases as nanoclay or EPDM content increases.  相似文献   

17.
TiO(2) nanoparticles of different phases play a key role in property alteration of nanocomposite fibers. Polycaprolactone (PCL)/TiO(2) composite fibers were prepared using the electrospinning method. Pure anatase and rutile phases were synthesized using the sol-gel route for nanocomposite synthesis. The Effect of nanoparticle phases on crystallinity of fibers and interaction with polymer molecules have been studied using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, morphology through SEM, surface properties using BET method and wetting property of fibers commencing from contact angle measurement. Biocompatibility and biodegradation of hybrid materials have been studied in simulated body fluid (SBF) and phosphate buffer (PBS), respectively. The anatase phase with smaller particle dimensions exhibited significant improvement of most of the properties as compared to composites made of the rutile phase. Better interaction between polymer chain and anatase particle PCL-A nanocomposite fibers leads to better mechanical property and biocompatibility vis-à-vis PCL-R and pristine PCL fibers. Biocompatibility of PCL nanocomposite has been testified through proliferation of fibroblast cell and its adhesion; MTT (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay demonstrates good proliferation rate for cells on PCL-A nanocomposite fibres.  相似文献   

18.
Morphology and properties of waterborne polyurethane/clay nanocomposites   总被引:4,自引:0,他引:4  
Aqueous emulsion of polyurethane ionomers, based on poly(tetramethylene glycol) or poly(butylene adipate) as soft segment, isophorone diisocyanate as diisocyanate, 1,4-butandiol as chain extender, dimethyl propionic acid as potential ionic center, triethylene tetramine as crosslinker, and triethyl amine as neutralizer, were reinforced with organoclay to give nanocomposites. The particle size of emulsion was measured and the morphology of these nanocomposites was observed by transmission electron microscope, where the effectively intercalated or exfoliated organoclay was observed. The reinforcing effects of organoclay in mechanical properties of these nanocomposites were examined by dynamic mechanical and tensile tests, and the Shore A hardness was measured. Enhanced thermal and water resistance and marginal reduction in transparency of these nanocomposites were observed compared with pristine polymer.  相似文献   

19.
In this paper, rheological properties evolution of the simple mixed isotactic polypropylene/organoclay composites, impacted by intermediate- or large-amplitude oscillatory shear fields, was followed by dynamic melt rheometry. The physical meanings of such rheological evolution upon oscillatory shearing, which related closely to the dispersion and intercalation of organoclay in polymer, were discussed deeply. Especially, a structural recovery test was adopted to assess microstructure development induced by large-amplitude oscillatory shear and to better understand the intercalation mechanism. Based on the experimental results, a novel intercalation mechanism that was taken to account for the disentanglement of polymer chains was suggested to describe shear-induced dispersion behaviors of organoclay in polymer matrix.  相似文献   

20.
Extrusion is one of the most applied technologies for the processing of polymer nanocomposites for applications in automotive, electrical and packaging industrial sectors. These nanostructured materials have advantages in comparison to traditional polymer materials, so that properties like tensile strength and modulus, barrier and surface properties, electrical properties and flame retardancy will be improved. There is a need to control amount and dispersion of the nanofillers in the polymer matrix during melt processing and to control the influence of the processing conditions on the nanocomposite formation. For an adequate real time characterization it is necessary to measure directly in the extruder. Spectroscopic methods and Ultrasonic measurements are outstanding methods for this kind of in-line monitoring. This paper deals with the real time determination of the dispersion and the impact strength of polymer nanocomposites in the melt during extrusion by Ultrasonic measurements and NIR spectroscopy. These in-line measurements were correlated with off-line rheological measurements, transmission electron microscopy and mechanical test measurements by multivariate data analysis. The polymers used are polypropylene and polyamide 6. As nanofillers we used different modified layered silicates. We determined the degree of exfoliation as an indicator for the dispersion of the nanofiller in the polymer matrix for different layered silicates and at different process conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号