首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Three different hydrophilic nanofillers--natural and synthetic layered silicate as well as octaammonium polyhedral oligomeric silsesquioxane (POSS)--were incorporated into polyamide-6 by a solution-mixing method. The surfaces of the resulting polymer nanocomposites were characterized by X-ray diffraction, polarized optical microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. All polymer nanocomposites displayed enhancement in surface hydrophilicity as well as increase in surface free energy due to surface enrichment of the nanofillers. The degree of enhancement was found to depend on both nanofiller type and dispersion state. Interfacial interactions in the form of hydrogen bonding played an important role in affecting the dispersion state of the layered silicates. Exfoliated layered silicates caused a larger increase in hydrophilicity than aggregated layered silicate. On the other hand, aggregated POSS molecules were able to induce a large increase in hydrophilicity. Significant spreading of water was also observed on surfaces containing POSS molecules. Surface models have been proposed to explain these phenomena.  相似文献   

2.
Polymer nanocomposites represent a class of materials that have assumed great importance in recent years and are the focus of extensive research. Unlike plastomer nanocomposites, the elastomer nanocomposites are in the stage of infancy in respect to their applications.

In general, in polymer composites, the matrix and the filler are bonded to each other by weak intermolecular forces and covalent bonding are rarely involved. If the filler could be dispersed in the polymer matrix at the nanometre level and is able to interact with the matrix by chemical bonding, nanocomposites with significant properties improvement are obtained. These improvements can include mechanical properties (module, strength, etc.), thermal resistance, decrease in gas permeability (barrier), flammability, etc.

This paper is a review of the property improvements of different elastomers using nanofillers like silicates, carbon black, metallic powders, cellulose crystals, mixture of nanofillers, etc, with the intention of obtaining elastomer nanocomposites.  相似文献   

3.
《中国化学》2017,35(12):1875-1880
To improve the dispersion of carbon nanotubes (CNTs) and flame retardancy of layered double hydroxide (LDH) in epoxy resin (EP), organic nickel‐iron layered double hydroxide (ONiFe‐LDH‐CNTs) hybrids were assembled through co‐precipitation. These hybrids were further used as reinforcing filler in EP. EP/ONiFe‐LDH‐CNTs nanocomposites containing 4 wt% of ONiFe‐LDH‐CNTs with different ratios of ONiFe‐LDH and CNTs were prepared by ultrasonic dispersion and program temperature curing. The structure and morphology of the obtained hybrids were characterized by different techniques. The dispersion of nanofillers in the EP matrix was observed by transmission electron microscopy (TEM). The results revealed a coexistence of exfoliated and intercalated ONiFe‐LDH‐ CNTs in polymer matrix. Strong combination of the above nanofillers with the EP matrix provided an efficient thermal and flame retardant improvement for the nanocomposites. It showed that EP/ONiFe‐LDH‐CNTs nanocomposites exhibited superior flame retardant and thermal properties compared with EP. Such improved thermal properties could be attributed to the better homogeneous dispersion, stronger interfacial interaction, excellent charring performance of ONiFe‐LDH and synergistic effect between ONiFe‐LDH and CNTs.  相似文献   

4.
This article presents the results of investigation into receiving amide modification agents of smectic clays, used as nanofillers in polymer nanocomposites. Prepared materials were obtained on the base of terephthalic and isophthalic acids and simple aliphatic amines. Such structure makes them good layered silicates modifying agents as well as makes them well affiliate to structure of polymers containing aromatic, carbonyl, amide, etc. groups. Obtained compounds were introduced into clays’ structure in protonated form, according to formulated method. Conducted research confirmed that the modification of montmorillonite clay (MMT) with received compounds had taken place. In order to establish that fact elementary analysis and X-ray diffraction (XRD) methods were used. Modificator molecules must display thermal resistance in full range of polymer processing temperatures. To investigate these properties the Thermogravimetric analysis (TG) of obtained compounds was carried out. These studies indicate that among the obtained compounds there were the ones with thermal stability over 523 K. Thermal resistance makes it possible for these substances to be used in poly(ethylene terephthalate) processing.  相似文献   

5.
A predictive creep model is developed which uses the properties of matrix and reinforcement to predict the creep of polymer/layered silicate nanocomposites. Up to this point, primarily empirical creep models such as Findley and Burgers models have been used for creep of polymer/clay nanocomposites. The proposed creep model is based on the elastic-viscoelastic correspondence principle and a stiffness model of these nanocomposites. Also, the added stiffness of polymeric matrix due to the constraining effect of layered silicates on polymer chains in the nanocomposite is considered by a parameter termed constraint factor. The results of the proposed model show good agreement with experimental creep data for different clay contents, stresses and temperatures. Comparing the model predictions with experimental data, a logical relationship between the method of processing and the constraint factor is discovered which shows that in-situ polymerization can be more efficient for improving creep resistance of polymer/layered silicate nanocomposites relative to melt processing.  相似文献   

6.
A novel method is described for the preparation of nanocomposites comprising a high performance rubber for tire application and layered silicates clay. In this work nanocomposites of solution‐styrene butadiene rubber (S‐SBR) with montmorillonite layered silicate were prepared with carboxylated nitrile rubber (XNBR), a polar rubber, as a compatibilizer. A sufficient amount of organomodified layered silicate was loaded in carboxylated nitrile rubber (XNBR) and this compound was blended as a master batch in the S‐SBR. Mixed intercalated/exfoliated morphologies in the nanocomposite are evinced by X‐ray diffraction measurements and transmission electron microscopy. Dynamic mechanical analysis also supports the compatibility of the composites. A good dispersion of the layered silicate in the S‐SBR matrix was reflected from the physical properties of the nanocomposites, especially in terms of tensile strength and high elongation properties.  相似文献   

7.
Polymer nanocomposites based on organically modified layered silicates are an area of substantial scientific interest and of emerging industrial practice. Despite the proven benefits of nanocomposites such as mechanical properties, barrier properties and contribution to fire retardancy, polymer nanocomposites are used today only in niche applications. The reasons for the limited growth of nanocomposites are explained through the availability of alternative solutions, processing and dispersion challenges and inferior oxidative and photooxidative stability. Recent developments show the improved dispersion of unmodified nanoclays in polyolefins with the help of selected copolymer structures. The (photo)oxidative instability of nanocomposites is compensated with adjusted stabilizer systems.  相似文献   

8.
Thermal properties of epoxy resin nanocomposites based on hydrotalcites   总被引:3,自引:0,他引:3  
Epoxy resin nanocomposites containing home-made hydrotalcites (HTlc) have been prepared and their properties have been studied and compared with those of montmorillonite (MMT)-type layered silicates-based nanocomposites. Nanofiller dispersion in the polymer matrix has been evaluated by transmission (TEM) electron microscopy and wide angle X-ray diffraction (WAXD), while nanocomposite thermal properties have been studied in detail by thermogravimetric analysis (TGA/DTG) and cone calorimeter tests.The morphological studies have shown that the compatibilisation of the above two type of nanofillers allowed us to obtain nanostructured materials. As far as thermal properties are concerned, nanocomposites based on HTlc are found to decompose, both in air and nitrogen, following a trend similar to that of the neat polymer matrix, while in the case of the nanocomposite based on the organophilic MMT a slight improvement was found in air. Conversely, cone calorimetric tests have demonstrated that only the organophilic hydrotalcite was capable of decreasing the peak of the heat release rate in a relevant way.  相似文献   

9.
Polymer composites have been the mainstay of high-performance structural materials, but these materials are inherently sensitive to environmental factors such as temperature, exposure to liquids, gases, electrical fields and radiation, which significantly affects their useful life. Addition of layered silicate nanofillers in the polymer matrix has led to improvements in the elastic moduli, strength, heat resistance, decreased gas permeability and flammability. In the present work epoxy modified with Cloisite 30 B̈ nanoclay (at 1, 3 and 5 wt% of resin) and E-glass unidirectional fibers are used to prepare fiber reinforced nanocomposites using hand lay-up method. The nanocomposites have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that the interlayer spacing between the clay platelets increased significantly indicating that the polymer is able to intercalate between the clay layers. The mechanical properties are measured by carrying out tensile, hardness and flexural tests and values are compared with those found for fiber reinforced neat epoxy composites. The tests show that an addition of nano-clay up to 3 wt% increases tensile strength and micro-hardness and there is a decrease in values with further clay addition up to 5 wt%. The flexural strength increased significantly with clay loading and the highest value is observed for specimens with 5 wt% of clay. Further, durability studies on nanocomposites have been performed in water and NaOH baths under accelerated hygrothermal conditions. During the exposure it is observed that the degradation in NaOH environment is more severe than in water.  相似文献   

10.
11.
In former studies of the preparation of polypropylene(PP)-clay nanocomposites, different types of layered silicates were used. However, the obtained results were not comparable due to different preparation conditions and types of silicates. The aim of this work was the investigation of the influence of different layered silicates on the properties of the resulting nanocomposites. FT-IR-spectra, SAXS, TEM micrographs, elemental analysis, mechanical properties and surface tension measurements were used for the comparison of the four different layered silicates under investigation.  相似文献   

12.
Functional inorganic nanofillers for transparent polymers   总被引:6,自引:0,他引:6  
The integration of inorganic nanoparticles into polymers has been used for the functionalization of polymer materials with great success. Whereas in traditional polymer composites, micron sized particles or agglomerates typically cause significant light scattering hampering optical applications, in nanocomposites the particle dimensions are small enough for the production of highly transparent composites. A challenge for the generation of such materials is to develop an integrated synthesis strategy adapting particle generation, surface modification and integration inside the polymer. Surface grafting using polymerizable surfactants or capping agents allows for linking the particles to the polymer. Novel techniques such as in situ polymerization and in situ particle processing are beneficial to avoid aggregation of inorganic particles inside the polymer matrix. The functions associated with inorganic fillers are widespread. Layered silicates and related materials are nowadays commercially available for improving mechanical and barrier properties in packaging. With the availability of highly transparent materials, the focus has shifted towards optical functions such as luminescence and UV-protection in transparent polymers. IR-active fillers are used in laser-holography for transparent poly(methyl methacrylate) (PMMA) nanocomposites. Refractive index modulation and ultrahigh refractive index films were developed based on inorganic materials such as PbS. The integration of magnetic nanoparticles has a great potential for applications such as electromagnetic interference shielding and magneto-optical storage.This tutorial review will summarize functions associated with the integration of inorganic nanofillers in polymers with a focus on optical properties.  相似文献   

13.
Layered double hydroxides (LDHs) are new nanofillers which exhibit improved thermal and flammability properties in various kinds of polymer matrices. These materials have certain advantages over conventional metal hydroxides and also layered silicates so far as the flame retardancy is concerned. In this article, flammability and thermal properties of the nanocomposite based on low density polyethylene (LDPE) and Mg-Al based layered double hydroxide (Mg-Al LDH) are reported in detail. The nanocomposites containing different LDH concentrations were prepared by melt-compounding using a tightly intermeshing co-rotating twin-screw extruder. The morphological analysis reveals an exfoliated/intercalated type LDH particle morphology in these nanocomposites. The thermogravimetric analysis (TGA) shows that even a small amount of LDH improves the thermal stability and onset decomposition temperature in comparison with the unfilled LDPE. The heat release rate (HRR) and its maximum (PHRR) during cone-calorimeter investigation are found to be reduced significantly with increasing LDH concentration. The nanocomposites not only exhibit reduced total heat released (measure of propensity to produce long duration fire), but also lower tendency to fast fire growth (measured by the ratio of PHRR and time of ignition). The limited oxygen index (LOI) and the dripping behavior are also improved with increasing LDH concentration.  相似文献   

14.
Summary: In this work polypropylene (PP) nanocomposites with different nanofillers (sepiolites and carbon nanofibres) have been produced, processed by injection moulding and fibre spinning and analyzed in terms of mechanical properties improvements. Different concentrations of both fillers were used in nanocomposites preparation. The influence of nanofiller type and amount on mechanical properties were analyzed and discussed for each process studied. This study was completed with a basic morphological characterization in order analyze the nanofiller dispersion, distribution and orientation in the nanocomposites. The results achieved show that it is possible to obtain a good dispersion and distribution of the each kind of nanofillers with conventional processing methodologies when the nanofiller concentration is small. Moreover the nanocomposites obtained had better properties than the starting polymers, showing that sepiolite and carbon nanofiller are able to provide an important contribution to the improvement of mechanical properties of the materials analyzed, enlarging the final application possibilities of PP based products.  相似文献   

15.
Preparation of PLA based nanocomposites was carried out by using two different nanofillers: expanded graphite and organically modified montmorillonite. The addition and co-addition of these nanofillers to PLA using the melt-blending technique provides nanocomposites that showed significant enhancements in rigidity, thermal stability and fire retardancy of the polymer matrix. The presence of dispersed graphite nanolayers in PLA significantly accelerated the polyester crystallization, whereas the essential increase of thermal resistance is mainly connected to the addition of organoclay. The structure of the nanocomposites was examined by Wide Angle X-ray Scattering Analysis and Transmission Electron Microscopy. The improvement of thermal and mechanical properties obtained by the presence of both nanoparticles in PLA were associated to the good (co)dispersion and to the co-reinforcement effect, whilst the fire retardant properties were found to be related to the combined additive action of both nanofillers.  相似文献   

16.
The thermal stability of organically modified layered silicates is determinant for processing polymer nanocomposites and is believed to play a key role on their properties. In this work, alkyl phosphonium, alkyl pyridinium and dialkyl imidazolium surfactants were used as intercalating agents for the preparation of highly thermally stable organophilic montmorillonites. The thermal decomposition of the surfactants and of their organoclays was studied by combined thermogravimetric analysis (TGA) and mass spectroscopy (MS), which allowed the identification of specific volatile compounds issued from the degradation. In order to investigate the influence of the thermal decomposition of the intercalating agent during processing, the various organoclays were incorporated in a polyethylene terephthalate (PET) matrix. The color of the nanocomposites was significantly affected by the thermal decomposition of the intercalating agent. In the case of the alkyl pyridinium modified clay, the degradation of the intercalating agent during processing was found to alter the clay dispersion. Finally, the crystallization was analyzed by differential scanning calorimetric (DSC) analysis and polarized optical microscopy (POM): it was demonstrated that the kinetics of nucleation and growth is not only affected by the dispersion state of the clay, but also depends on the clay/polymer interface properties, and therefore on the nature of the intercalating agent.  相似文献   

17.
A comprehensive overview of available methods for assessing nanofiller dispersion is presented for a wide range of layered silicate-based poly(ε-caprolactone) (PCL) nanocomposites. Focusing on their respective strengths and weaknesses, rheological, mechanical and thermal characterization approaches are evaluated in direct relation to morphological information. Pronounced changes in the rheological and mechanical properties of the materials are only observed for nanocomposites displaying the highest nanofiller dispersion levels, as confirmed by an innovative and highly reliable thermal analysis approach based on quasi-isothermal crystallization. As such, the data obtained from the different methods also allow a detailed investigation of the crucial factors affecting nanofiller dispersion, evidencing the importance of specific matrix/filler interactions and the need for proper melt processing conditions when targeting significant property enhancements. Finally, the wide potential of the developed methodologies for the characterization of polymeric nanocomposites in general is illustrated by an extension to carbon nanotube-based PCL composites, unambiguously demonstrating their complementarity and broad applicability.  相似文献   

18.
This article highlights the history, synthetic routes, material properties, and scope of ethylene/vinyl acetate copolymer (EVA)/clay nanocomposites. These nanocomposites of EVAs are achieved with either unmodified or organomodified layered silicates with different methods. The structures of the resulting polymer/inorganic nanocomposites have been characterized with X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The addition of a small amount of clay, typically less than 8 wt %, to the polymer matrix unusually promotes the material properties, such as the mechanical, thermal, and swelling properties, and increases the flame retardancy of these hybrids. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 471–480, 2006  相似文献   

19.
Polymer nanocomposites containing layered silicates have been considered as a new generation of composite materials due to their expected unique properties attributed to the high aspect ratio of the inorganic platelets. Nevertheless, addition of layered silicates to polyolefins mostly results in phase separated systems because of the incompatibility of the silicates with the non-polar polyolefins. Functional compatibilizers are required to enhance the interactions and alter the structure from phase separated micro-composites to intercalated and exfoliated nanocomposites. Commercial macromolecular compatibilizers (mainly maleic-anhydride-functionalized polyolefins) are most commonly used to improve the interfacial bonding between the fillers and the polymers whereas specifically synthesized functional homopolymers or copolymers have been utilized as well. In this article, we are reviewing a number of investigations, which studied the influence on the composite structure of various parameters like the compatilizer to inorganic ratio, the type and content of the functional groups and the molecular weight of the functional additive, the miscibility between the matrix polymer and the compatibilizer, the kind of surfactants modifying the inorganic surface, the processing conditions, etc. The most important results obtained utilizing maleic-anhydride-functionalized polyolefins are discussed first, whereas a summary is presented then of the studies performed utilizing other functional oligomers/polymers. X-ray diffraction and transmission electron microscopy studies supported by rheology indicate that the most important factor controlling the structure and the properties is the ratio of functional additive to organoclay whereas the miscibility between the matrix polymer and the compatibilizer is a prerequisite.  相似文献   

20.
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号