首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
邢雁  王志平  王旭 《发光学报》2007,28(6):843-846
采用推广的LLP方法研究了自组织量子点中磁激子的极化子效应。考虑带电粒子和声子的相互作用,得到了激子能量随磁场的变化关系。结果表明,激子-声子的相互作用降低了激子的能量,但影响很小;极化子效应在没有外磁场时较明显,随着外磁场的增加,这种效应变得越来越弱。  相似文献   

2.
We present a simple analytical approach to calculate the built-in strain-induced and spontaneous piezoelectric fields in nitride-based quantum dots (QDs) and then apply the method to describe the variation of exciton, biexciton and charged exciton energy with dot size in GaN/AlN QDs. We first present the piezoelectric potential in terms of a surface integral over the QD surface, and confirm that, due to the strong built-in electric field, the electrons are localised near the QD top and the holes are localised in the wetting layer just below the dot. The strong localisation and smaller dielectric constant results in much larger Coulomb interactions in GaN/AlN QDs than in typical InAs/GaAs QDs, with the interaction between two electrons, Jee, or two holes, Jhh, being about a factor of three larger. The electron–hole recombination energy is always blue shifted in the charged excitons, X and X+, and the biexciton, and the blue shift increases with increasing dot height. We conclude that spectroscopic studies of the excitonic complexes should provide a useful probe of the structural and piezoelectric properties of GaN-based QDs.  相似文献   

3.
We investigate the recombination dynamics of positively charged and neutral biexcitons and excitons in a single InAs/GaAs quantum dot (QD) within a two-dimensional (2D) photonic bandgap (PBG). The 2D PBG makes the exciton lifetime four times longer and enhances photon-extraction efficiency compared to those without the PBG. Photon cross-correlation measurements demonstrate the cascade emissions of both charged and neutral biexcitons–excitons from the same QD. In the charged case, a hole in the p-shell relaxes into the s-shell between the cascade, and the corresponding transition is confirmed based on the spin configuration. The long exciton lifetime with the PBG helps us to reveal the spin dynamics that did not clearly appear in intrinsic QDs.  相似文献   

4.
Recombination and stabilization energies of multiexcitons confined in positively and negatively charged semiconductor InGaAs/GaAs quantum dot (QD) samples have been studied by employing large-scale configuration interaction (CI) calculations. The CI calculations show that at most six electrons or two holes can be confined in the QD. Multiply charged multiexciton complexes with up to five excess electrons or two excess holes are also found to be stable, even when a few electron–hole pairs are present in the QD. The chemical potential functions for charged QD samples do not possess the pronounced stepped form as obtained for the corresponding neutral multiexciton complexes. The negatively and the positively charged excitons (negative and positive trions) lie lower in energy as compared to a neutral exciton and a single non-interacting charge carrier in the lowest single-particle state of another quantum dot. The other charged multiexciton complexes studied are not confined with respect to the corresponding neutral multiexciton and a non-interacting charge carrier. To include the contributions from the heavy-hole light-hole (HH–LH) coupling, a perturbative treatment of the band-mixing effects was implemented. The perturbation-theory calculations show that the HH–LH coupling does not shift the energies in the present InGaAs/GaAs QD sample.  相似文献   

5.
李文生  孙宝权* 《物理学报》2013,62(4):47801-047801
在低温5 K下, 采用光致发光光谱及外加偏压调谐量子点电荷组态研究了InAs单量子点的精细结构和对应发光光谱的偏振性、不同带电荷激子的圆偏振特性. 得出如下结果: 1) 指认InAs单量子点中不同荷电激子的发光光谱和对应的激子本征态的偏振特性; 2) 外加偏压可以调谐量子点的荷电激子的发光光谱; 3) 伴随着电子、空穴的能量弛豫, 电子的自旋弛豫时间远大于空穴的自旋弛豫时间. 关键词: InAs量子点 激子 荧光光谱 电场调谐  相似文献   

6.
A single-electron transistor (SET) is used to detect tunneling of single electrons into individual InGaAs self-assembled quantum dots (QDs). By using an SET with a small island area and growing QDs with a low density we are able to distinguish and measure three QDs. The bias voltage at which resonant tunneling into the dots occurs can be shifted using a surface gate electrode. From the applied voltages at which we observe electrons tunneling, we are able to measure the electron addition energies of three QDs.  相似文献   

7.
Vertically coupled Stranski Krastanow quantum dots (QDs) are predicted to exhibit strong tunnelling interactions that lead to the formation of hybridised states. We report the results of investigations into single pairs of coupled QDs in the presence of an electric field that is able to bring individual carrier levels into resonance and to investigate the Stark shift properties of the excitons present. Pronounced changes in the Stark shift behaviour of exciton features are identified and attributed to the significant redistribution of the carrier wavefunctions as resonance between two QDs is achieved. At low electric fields coherent tunnelling between the two QD ground states is identified from the change in sign of the permanent dipole moment and dramatic increase of the electron polarisability, and at higher electric fields a distortion of the Stark shift is attributed to a coherent tunnelling effect between the ground state of the upper QD and the excited state of the lower QD.  相似文献   

8.
We present theoretical calculations of the variation of exciton energies in truncated conical InGaN quantum dots (QDs) in a GaN matrix with dot size and indium composition. We compute the built-in strain-induced and spontaneous piezoelectric fields using a surface integral method that we have recently derived, and confirm that the built-in fields can be of the order of a few MV/cm, resulting in a spatial separation of the electrons and holes. The ground state wavefunctions of the exciton (X0), biexciton (2X0) and the two charged excitons (X and X+) are then calculated in the Hartree approximation, using a self-consistent finite difference method. We find that the electron–hole recombination energy is always blue-shifted for the charged excitons X and X+, with a further blue-shift for the biexciton, and this blue-shift increases with increasing indium content. We describe the trends in interband transition energy and the scale of the blue-shift with dot size, shape and composition. We conclude that spectroscopic studies of the exciton, charged excitons and biexciton should provide a useful probe of the structural and piezoelectric properties of GaN-based QDs.  相似文献   

9.
Using time-resolved photoluminescence (PL) spectroscopy, we establish the presence of the Förster energy transfer mechanism between two arrays of epitaxial CdSe/ZnSe quantum dots (QDs) of different sizes. The mechanism operates through dipole–dipole interaction between ground excitonic states of the smaller QDs and excited states of the larger QDs. The dependence of energy transfer efficiency on the width of barrier separating the QD insets is shown to be in line with the Förster mechanism. The temperature dependence of the PL decay times and PL intensity suggests the involvement of dark excitons in the energy transfer process.  相似文献   

10.
Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound exciton states and interband optical transitions are investigated theoretically by means of a variational method. Our calculations indicate that the emission wavelengths sensitively depend on the donor position, the strong BEF, and the structure parameters of the QD system.  相似文献   

11.
The charging of quantum dots provides two strong effects which improve Quantum Dot Infrared Photodetector (QDIP) performance. First, electrons placed in the quantum dots enhance IR-induced transitions and increase electron coupling to IR radiation. Second, the built-in-dot charge creates potential barriers around dots and these barriers strongly suppress the photoelectron capture and exponentially increase the photoelectron lifetime. Both effects enhance the IR photoresponse. Long photoelectron lifetime decreases the generation–recombination noise and increases the device sensitivity. To investigate the potential profiles around charged dots, we used the nextnano3 software which allows for simulation of multilayer structures combined with realistic geometries in one, two, and three spatial dimensions. In weak electric fields the photoelectron kinetics and transport in the potential created by charged dots have been studied analytically. In strong fields the results were based on Monte-Carlo modeling. The effects of dot charging have been investigated in QD structures which were fabricated using molecular beam epitaxy. InAs quantum dots were grown on AlGaAs surfaces by deposition of approximately 2.1 monolayers of InAs. In the obtained structures the dot charging is realized via intra-dot and inter-dot doping. The increase in photoresponse due to dot charging is in good agreement with the model which takes into account anisotropy of potential barriers around QDs in QD layers.  相似文献   

12.
We discuss photonic crystals (PCs) with a microelectromechanical system (MEMS) and semiconductor quantum dots (QDs) as novel classes of PC devices. Integration of MEMS structures into PC devices enables one to realize several kinds of functional devices, such as modulators, switches, and tunable filters for highly integrated photonic circuits. We describe the basic concept of MEMS-integrated PC devices and show numerical and experimental demonstrations of MEMS-integrated functional PC devices. On the other hand, QDs are promising candidates for active media in PC devices. Spontaneous emission control of QD emission in PC nanocavities is especially important for novel optoelectronic devices and quantum information devices. In PC nanocavities, the interaction between QD excitons and photons is enhanced dramatically. The control of spontaneous emission spectrum and the enhancement of the luminescence intensity of InAs QDs by PC nanocavities are demonstrated at telecommunication wavelengths. The Purcell effect for ensemble and single QDs in PC nanocavities are also discussed.  相似文献   

13.
We present recent studies of electronic excitations in nanofabricated AlGaAs/GaAs semiconductor quantum dots (QDs) by resonant inelastic light scattering. The resonant light scattering spectra are dominated by excitations from parity-allowed inter-shell transitions between Fock–Darwin levels. In QDs with very few electrons the resonant spectra are characterized by distinct charge and spin excitations that reveal the strong impact of both exchange and correlation effects. A sharp inter-shell spin excitation of the triplet spin QD state with four electrons is identified.  相似文献   

14.
A. Bande 《Molecular physics》2019,117(15-16):2014-2028
ABSTRACT

Recently, highly accurate multi-configuration time-dependent Hartree electron dynamics calculations demonstrated the efficient long-range energy transfer inter-Coulombic decay (ICD) process to happen in charged semiconductor quantum dot (QD) pairs. ICD is initiated by intraband photoexcitation of one of the QDs and leads to electron emission from the other within a duration of about 150 ps. On the same time scale electronically excited states are reported to relax due to the coupling of electrons to acoustic phonons. Likewise, phonons promote ionisation. Here, the QDs' acoustic breathing mode is implemented in a frozen-phonon approach. A detailed comparison of the phonon effects on electron relaxation and emission as well as on the full ICD process is presented, which supports the previous empirical finding of ICD being the dominant decay channel in paired QDs. In addition the relative importance of phonon–phonon, phonon–electron and electron–electron interaction is analysed.  相似文献   

15.
The theoretical aspects of the effect of multiple exciton generation (MEG) in quantum dots (QDs) have been analysed in this work. The statistical theory of MEG in QDs based on Fermi??s approach is presented, taking into account the momentum conservation law. According to Fermi this approach should give the ultimate quantum efficiencies of multiple particle generation. The microscopic mechanism of this effect is based on the theory of electronic ??shaking??. According to this approach, the wave function of ??shaking?? electrons can be selected as Plato??s functions with effective charges depending on the number of generated excitons. From the theory it is known increasing the number of excitons leads to enhancement of the Auger recombination of electrons which results in reduced quantum yields of excitons. The deviation of the averaged multiplicity of the MEG effect from the Poisson law of fluctuations has been investigated on the basis of synergetics approaches. In addition the role of interface electronic states of QDs and ligands has been considered by means of quantum mechanical approaches. The size optimisation of QDs has been performed to maximise the multiplicity of the MEG effect.  相似文献   

16.
We perform numerical simulation of the Coulomb blockade microscopy on single and double quantum dots (QDs) weakly coupled to the reservoirs of the two-dimensional electron gas. The model describes the screening of the Coulomb charge at the tip of the atomic force microscope by deformation of the electron gas in the QD and in the reservoirs by a self-consistent iteration of DFT equations for the coupled subsystems. We discuss the reaction of the electrons to the tip and the shape of the effective tip potential, which in general becomes short range, strongly dependent on the tip position and asymmetric with a longer tail at the side of the QD. We determine the ground state under influence of the charged probe and obtain charge stability maps of QD as functions of the tip position. We evaluate the charging lines and compare them with the ones obtained for the perturbative conditions for which the charge density is assumed unaffected by the tip.  相似文献   

17.
在SSH哈密顿基础上引进电子关联,对反式聚乙炔链中光致激子的产生和演化过程实施分子动力学模拟。弱关联强度U取值0~1.250 eV,V =U/2取值0~0.625 eV .计算结果表明,关联强度的大小影响链中元激发类型,U<0.555eV时产生的元激发为孤子-反孤子对,U >0.555eV 时产生的元激发为正负荷电极化子对。为进一步讨论该类型一维系统中不同类型激子的产生、输运、衰减等动态过程,关联强度U的选择提供参考。  相似文献   

18.
A detailed investigation of the nonlinear optical properties of the (D+X) complex in a disc-like quantum dot (QD) with the parabolic confinement, under applied magnetic field, has been carried by using the perturbation method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. The competition between the confinement and correlation effects on the one hand, and the magnetic field effects on the other hand, is also discussed. The results show that the confinement strength of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we note that the absorption coefficients of an exciton in QDs depend strongly on the impurity but weakly on the magnetic field. Furthermore, the light and heavy hole excitons should be taken into account when we study the optical properties of an exciton in a disc-like QD.  相似文献   

19.
The optical pump-probe method, which makes it possible to determine the energy relaxation rate for excited electron-hole pairs and excitons in semiconductor quantum dots (QDs), is theoretically described. A scheme in which the carrier frequencies of optical pump and probe pulses are close to resonance with the same interband transition in the QD electron subsystem (degenerate case) is considered. The pump-induced probe energy absorption is analyzed as a function of the delay time between the pump and probe pulses. It is shown that under certain conditions this dependence is reduced to monoexponential, whose exponent is proportional to the energy relaxation rate for the considered state of electron-hole pairs and excitons. The size dependence of the energy relaxation rate of the electron-hole pair states is modeled by the example of PbSe-based QDs, whose electron subsystem is in the strong-confinement regime.  相似文献   

20.
We report on optical spectroscopy of self-assembled InAs quantum dots in a magnetic field. We describe how we measure the emission characteristics of a single quantum dot (QD) in high magnetic fields at low temperature using a miniature, fiber-based confocal microscope. Example results are presented on a QD whose charge can be controlled using a field-effect device. For the uncharged, singly and doubly charged excitons we find a diamagnetism and the spin Zeeman effect. In contrast, for the triply-charged exciton we find a fundamentally different behavior. Anti-crossings in magnetic field imply that confined states of the QD are hybridized with Landau-like levels associated with the two-dimensional continuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号