首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   56篇
  国内免费   2篇
化学   826篇
晶体学   5篇
力学   32篇
数学   90篇
物理学   198篇
  2023年   13篇
  2022年   11篇
  2021年   36篇
  2020年   27篇
  2019年   32篇
  2018年   17篇
  2017年   14篇
  2016年   38篇
  2015年   38篇
  2014年   38篇
  2013年   69篇
  2012年   83篇
  2011年   92篇
  2010年   56篇
  2009年   54篇
  2008年   64篇
  2007年   61篇
  2006年   59篇
  2005年   57篇
  2004年   41篇
  2003年   35篇
  2002年   26篇
  2001年   23篇
  2000年   9篇
  1999年   7篇
  1998年   9篇
  1997年   4篇
  1996年   18篇
  1995年   5篇
  1994年   10篇
  1993年   9篇
  1992年   12篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1982年   10篇
  1980年   4篇
  1977年   5篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1969年   2篇
  1918年   1篇
  1908年   1篇
  1900年   1篇
  1891年   3篇
排序方式: 共有1151条查询结果,搜索用时 15 毫秒
1.
2.
Redox condensation of [Ru3H(CO)11]- with Ni(CO)4, in tetrahydrofuran solution, under a nitrogen atmosphere, yields the tetranuclear anion [NiRuH(CO)11)-. Subsequent deprotonation with Bu'OK in acetonitrile solution leads to the formation of the related dianion. Both anions have been characterized by spectroscopic techniques, elemental analysis and single crystal X-ray diffraction. [PPh4][NiRu3H(CO)12] crystallizes in the triclinic space group PI with unit cell dimensionsof a = 11.842(2) Å,b = 12.335(3) Å, c = 13.3080) Å,a = 91.89(2)°, = 93.35(1)°,y = 96.41(2)°, Z = 2, V= 1926.9(7) Å'. The NiRu3, metal core of the molecule defines a distorted tetrahedron with nine terminal and three edge bridging carbonyl groups. The hydrido ligand was located by difference Fourier techniques and was found to bridge the NiRu2 basal triangle at a distance of 0.88(6) A from this plane. Selected average distances and angles are: Ru-Ru = 2.839 Å, Ru-Ni = 2.640 Å, Ru-C, = 1.910 A,Ru-C b = 2.084 Å, Ni-C b = 2.022 Å, Ru-H = 1.77 Å, C-0, = 1.135 Å, C-O b = 1.159 Å, M-C-O, = 176.3°,M-C--O b = 139.3°;other distances are: Ni-C1 = l.758(7) Å, Ni-H= 1.85(7) Å. [NEt4]2[NiRu3(CO)12] crystallizes in the orthorhombic space group Pnma (no. 62) with unit cell dimensions ofa=20.247(5) Å,b = 15.038(4)Å,c = 12.079(3) Å, Z=4, V=3678(2) A'. The molecule contains a tetrahedral NiRu3 core with eight terminal and four edge bridging carbon monoxide groups which bridge the three Ni-Ru and one Ru-Ru bond. Average distances and angles are: Ru -Ru =2.3050A Ru-Ni 2.648 Å, Ru-C t = 1.878 Å, Ru-C b 2.045 Å, Ni-C b = 2.055 Å, C-O t = 1.145 Å, C-01,=1.157 Å, M-C-O,= 176.9°, M-C-O b = 138.6°; other distance is: Ni-C t = 1.754(10) Å,t = terminal,b = bridging.  相似文献   
3.
1-Phenyl-3,5-dioxopyrazolidine 1 reacts with carbon disufide and alkyl halides in presence of excess of sodium acetate in dimethylformamide to afford the ketene dithioacetals 3a-h . The 13C chemical shift assignments of these compounds were made on the basis of two-dimensional nmr studies performed on the N-methylketene dithioacetal derivative 4.  相似文献   
4.
A series of cis-cis-triaminocyclohexane Zn(II) complex-anthraquinone intercalator conjugates, designed in such a way to allow their easy synthesis and modification, have been investigated as hydrolytic cleaving agents for plasmid DNA. The ligand structure comprises a triaminocyclohexane platform linked by means of alkyl spacers of different length (from C(4) to C(8)) to the anthraquinone group which may intercalate the DNA. At a concentration of 5 microM, the complex of the derivative with a C(8) alkyl spacer induces the hydrolytic stand scission of supercoiled DNA with a rate of 4.6 x 10(-6) s(-1) at pH 7 and 37 degrees C. The conjugation of the metal complex with the anthraquinone group leads to a 15-fold increase of the cleavage efficiency when compared with the anthraquinone lacking Zn-triaminocyclohexane complex. The straightforward synthetic procedure employed, allowing a systematic change of the spacer length, made possible to gain more insight on the role of the intercalating group in determining the reactivity of the systems. Comparison of the reactivity of the different complexes shows a remarkable increase of the DNA cleaving efficiency with the length of the spacer. In the case of too-short spacers, the advantages due to the increased DNA affinity are canceled due to the incorrect positioning of the reactive group, thus leading to cleavage inhibition.  相似文献   
5.
The interaction between glucose oxidase (GOx) and phospholipid monolayers is studied at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy. Electrochemical experiments show that the presence of GOx induces changes in the capacitance curves at both negative and positive potentials, which are successfully explained by a theoretical model based on the solution of the Poisson-Boltzmann equation. These changes are ascribed to a reduced partition coefficient of GOx and an increase of the permittivity of the lipid hydrocarbon domain. Our results show that the presence of lipid molecules enhances the adsorption of GOx molecules at the liquid/liquid interface. At low lipid concentrations, the adsorption of GOx is probably the first step preceding its penetration into the lipid monolayer. The experimental results indicate that GOx penetrates better and forms more stable monolayers for lipids with longer hydrophobic tails. At high GOx concentrations, the formation of multilayers is observed. The phenomenon described here is strongly dependent on 1) the GOx and lipid concentrations, 2) the nature of the lipid, and 3) the potential drop across the interface.  相似文献   
6.
The interaction of the ethyl xanthate (EX) anion with a copper electrode in a borate buffer solution, pH 9.2, has been investigated by cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and measurements of contact angle (CA) under controlled potential. The results obtained allow establishing that, in the potential range from -0.80 and -0.60 V, two parallel reactions were characterized. These reactions were the ethyl xanthate electroadsorption and the hydrogen evolution reaction (HER). This last reaction has not been described by previous authors. Besides, the EIS measurements show that the mechanism of the HER on copper electrodes is not affected by the presence of a ethyl xanthate species. The EQCM study shows that in the electrodesorption process the departure of each ethyl xanthate species from the copper electrode is accompanied with the simultaneous entry of four to five water molecules. This fact is in accordance with the number of copper atoms involved in the adsorption of one ethyl xanthate species.  相似文献   
7.
Elisa Paredes 《Tetrahedron》2007,63(18):3790-3799
Thermal reactions between nitronaphthalenes and butadienes were studied. It was demonstrated that these reactions are capable of undergoing the normal electron demand Diels-Alder reaction, with a variety of dienes affording the phenanthrene derivatives. The influence of the extension and type of substitution was also discussed. When the electron-withdrawing activation of the naphthalenic nucleus or the donor properties of the dienes were not enough, N-naphthylpyrroles were detected as main product, suggesting that a competitive reaction would probably take place. The results clearly confirmed the dienophilic nature of nitronaphthalenic double bonds and provided an alternative procedure for phenanthrene derivatives and N-naphthylpyrroles' synthesis. The relative reactivity of the reactants and the viability of the reactions were discussed from a theoretical point of view.  相似文献   
8.
A rapid and reproducible method for the determination of tannins in vegetable tanning baths is proposed as a modification of the BSA method for grain tannins existing in literature. The protein BSA was used instead of leather powder employed in the Filter Method, which is adopted in Italy and various others countries of Central Europe. In this rapid method the tannin contents is determined by means a spectrophotometric reading and not by means a gravimetric analysis of the Filter Method. The BSA method, which belongs to mixed methods (which use both precipitation and complexation of tannins), consists of selective precipitation of tannin from a solution containing also non tannins by BSA, the dissolution of precipitate and the quantification of free tannin amount by its complexation with Fe(III) in hydrochloric solutions. The absorbance values, read at 522 nm, have been expressed in terms of tannic acid concentration by using a calibration curve made with standard solutions of tannic acid; these have been correlated with the results obtained by using the Filter Method.  相似文献   
9.
The photochemical and photocatalytic properties of iron meso-tetraarylporphyrins bearing an OH(-) axial ligand and different substituents in the beta-positions of the porphyrin ring are reported. Irradiation (lambda = 365 nm) in the absence of dioxygen leads to the reduction of Fe(III) to Fe(II) with the formation of OH(*) radicals. Substituents at the pyrrole beta-positions are found to markedly affect the photoreduction quantum yields. Under aerobic conditions, this photoreaction can induce the subsequent oxidation of cyclohexane to cyclohexanone and cyclohexanol by O(2) itself. The process occurs under mild conditions (22 degrees C; 760 Torr of O(2)) and without the consumption of a reducing agent. The polarity of the solvent and the nature of the porphyrin ring have a remarkable effect on the selectivity of the photooxidation process, likely controlling the cleavage of O-O bonds of possible iron peroxoalkyl intermediates. In particular, in pure cyclohexane, oxidation occurs with the selective formation of cyclohexanone; in contrast, in dichloromethane/cyclohexane mixed solvent, the main oxidation product is cyclohexanol. Phenyl-tert-butylnitrone (pbn) has been found to quench the radical chain autooxidation of the substrate thus increasing the yield of cyclohexanol. This becomes the only oxidation product when iron 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin hydroxide (Fe(III)(TDCPP)(OH)) is used as photocatalyst.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号