首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
以BiNO3·5H2O和NH4VO3为原料,柠檬酸为络合剂,成功合成了BiVO4空心纳米球.采用TEM、XRD、UV-Vis等测试技术对样品的形貌、相结构以及光吸收性能等进行了表征.结果表明,所制备的BiVO4空心微球在紫外区和可见区均有较强的光吸收,空心球平均粒径为160 nm,空腔直径为10~80 nm.以亚甲基蓝染料溶液的脱色降解实验为模型反应研究了样品的光催化性能.光催化实验结果表明,在可见光照射下,反应150 min后,样品对亚甲基蓝溶液的脱色率可达到95%以上.此外,考察了柠檬酸添加量对空心球形貌的影响,并提出了BiVO4空心纳米球的可能形成机理.  相似文献   

2.
Pure tetragonal and monoclinic phases BiVO4 were prepared from aqueous Bi (NO3)3 and NaVO3 solutions by a rapid microwave-assisted method that employed accurate controlling of microwave irradiation time and power. The highly crystalline phase converted irreversibly from tetragonal to monoclinic BiVO4 with gradually elongated irradiation time gradually, which is further proved by X-ray diffraction, UV–vis and Raman measurements. These variations of phase structures led to different photocatalytic properties under visible light.  相似文献   

3.
The monoclinic scheelite BiVO4 crystals with peanut-like, oval, twin-quadrangle and twin-four-pointed star morphologies were synthesized via a facile one step hydrothermal method by using sodium citrate as the chelating agent. The X-ray diffraction and scanning electron microscopy were employed to elucidate the structures and mophologies of the as-prepared BiVO4 samples. The results showed that the formation of m-BiVO4 with different morphologies relied on the pH value of the precursor solution. The band gaps values (Eg) of all the BiVO4 samples were around 2.37–2.45 eV according to the UV–vis diffuse reflectance spectrum, which indicated that samples could strongly absorb in the visible light region. The photocatalytic activities of BiVO4 crystals were evaluated by degradation of MB in aqueous solution under artificial solar-light. The BiVO4 samples obtained at different pH values showed different photocatalytic activities during the sunlight-driven photodegradation of methylene blue (MB). The sample with peanut-like-shape prepared at pH=1 exhibited the highest activity, and the photocatalytic conversion could reach above 90% after 3 h of irradiation. The result suggested that m-BiVO4 with peanut-like-shape could be used as an effective photocatalyst in practical application for organic pollutants degradation.  相似文献   

4.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

5.
The BiVO4-based photocatalysts loaded with rare earth (RE=Ho, Sm, Yb, Eu, Gd, Nd, Ce and La) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), nitrogen adsorption for the BET specific surface area and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by decolorization of methylene blue (MB) under visible light irradiation. The results of XRD, SEM and XPS analysis deduced that the rare earth ions were present as RE2O3 in the samples. The DRS analysis showed the shift in the absorbption edge from the UV to the visible range: Ho3+-BiVO4 < Sm3+-BiVO4 < Yb3+-BiVO4 < Eu3+-BiVO4 < Gd3+-BiVO4 < Nd3+-BiVO4 < La3+-BiVO4 < Ce3+-BiVO4 < BiVO4. Gd3+-BiVO4 had the highest photocatalytic activity among all the RE3+-BiVO4 catalysts. The optimal Gd content was 8 at% under visible light irradiation. This beneficial effect was attributed to the specific electron structure characteristics of gadolinium and the increasing in the separation efficiency of the electron-hole pairs. On the contrast, the other rare earth ions had the detrimental effect on the photocatalytic decolorization of MB.  相似文献   

6.
MO(=CuO, Co3O4, NiO)/BiVO4 p–n junction composites were synthesized by urea-precipitation and wet impregnation method. The physicochemical and optical properties of the as-prepared materials were investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–visible diffuse reflectance spectra. The photocatalytic performance of the as-prepared materials was investigated for decomposition of azo dye, acid orange 7. The CuO/BiVO4 and Co3O4/BiVO4 p–n junction composite photocatalysts exhibited the higher photocatalytic degradation of acid orange 7 than those of BiVO4 and NiO/BiVO4 as-prepared samples under visible light irradiation. We also discussed the mechanism of enhanced photocatalytic activity of p–n junctioned composites based on their energy band structures.  相似文献   

7.
Different morphologies of monoclinic BiVO4 with smaller size were hydrothermal synthesized by simply adjusting the amount of surfactant (polyvinyl pyrrolidone PVP K30) added. The detailed field emission scanning electron microscope (FESEM) analysis revealed that the amount of PVP added could significantly affect the morphology and size of BiVO4. Their photocatalytic activities were evaluated by the decolorization of methylene blue (MB) aqueous solution under visible-light irradiation (λ > 400 nm), and the as-prepared sample with well-assembled flower-like morphology showed a much higher photocatalytic activity due to larger specific surface area and higher separation efficiency of photo-induced carriers. The relationship between the behavior of photo-induced carriers and photocatalytic activity was studied using the surface photovoltage spectroscopy (SPS) and corresponding phase spectra.  相似文献   

8.
Visible-light responsive monoclinic BiVO4/MWCNT nanocomposites were facilely prepared via an in situ hydrothermal method by using sodium dodecyl sulfonate (SDS) as a guiding surfactant. The as-prepared BiVO4/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy. The results showed that the hydrothermal temperature and adding SDS had significant influence on the morphology and size of BiVO4. The photocatalytic activities of BiVO4/MWCNT nanocomposites were investigated by degrading methylene blue (MB) under visible-light irradiation. Remarkable enhancement in photodecomposition of MB was observed with BiVO4/MWCNT composite compared with bare BiVO4 particles. This improvement of photocatalytic was attributed to the effective charge transfer from BiVO4 nanocrystals to MWCNT, which promoted the migration efficiency of photogenerated electron–hole. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.  相似文献   

9.
A visible light responsive N-doped TiO2 was prepared via a reduction-nitridation procedure by nonthermal plasma treatment. X-ray diffraction, N2 adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared TiO2 samples. The plasma treatment did not change the phase composition and particle sizes of TiO2 samples, but extended its absorption edges to the visible light region. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of TiO2 prepared by reduction-nitridation procedure were much higher than that of samples prepared by simple nitridation treatment. The enhanced activity was ascribed to the substitutional N-doping and appropriate concentration of oxygen vacancies. TOHN10 prepared by reduction-nitridation procedure exhibited excellent photocatalytic stability. A possible mechanism for the photocatalysis was proposed.  相似文献   

10.
In this paper, a novel method for fabrication of silver/cuprous oxide (Ag/Cu2O) nanocomposites is reported. The method involves the reduction of Ag+ and Cu2+ in the aqueous solution to Ag/Cu2O without adding any reducing reagent under electron beam (EB) irradiation. Dye methyl orange is used as the pollutant model to investigate the photocatalytic properties of these nanocomposites. The results reveal that they have higher photocatalytic efficiencies than that of Cu2O under visible light. These visible light-sensitive catalysts may have potential application in the field of environmental remediation.  相似文献   

11.
Bismuth vanadate (BiVO4) spindle particles with monoclinic scheelite structure have been successfully synthesized via a facile sonochemical method. The as-prepared BiVO4 photocatalyst exhibited a hollow interior structure constructed from the self-assembly of cone shape primary nanocrystals. A possible oriented attachment growth mechanism has been proposed based on the results of time-dependent experiments, which indicates the formation of spindle particles is mainly attributed to the phase transformation procedure induced by ultrasound irradiation. A series of morphology evolutions of BiVO4 from compact microspheres, to hollow microspheres, and then to spindle particles have been arrested in the process of sonochemical treatment. Optical absorption experiments revealed the BiVO4 spindle had strong absorption in the visible light region. A much higher photocatalytic activity of these spindle particles was found in comparison with the SSR-BiVO4 material for degradation of rhodamine-B under visible light irradiation, which may be ascribed to its special single-crystalline nanostructure.  相似文献   

12.
Novel graphitic carbon nitride (C3N4) and bismuth vanadate (BiVO4) composite photocatalysts were successfully synthesized by a facile hydrothermal method. The scanning electron microscopy (SEM) revealed that an intimate interface between C3N4 and BiVO4 formed in the composites. Compared with the pure C3N4 and BiVO4, the C3N4–BiVO4 photocatalysts showed remarkably the higher photocatalytic activities in degrading rhodamine B (Rh B). The best active heterojunction proportion was 0.5C3N4–0.5BiVO4. Over this catalyst, the 100% degradation of Rh B (0.002 mmol L−1) was obtained under visible light irradiation (λ>420 nm) for 40 min. The active species in Rh B degradation were examined by adding a series of scavengers. The study on photocatalytic mechanism revealed that the electrons injected directly from the conduction band of C3N4 to that of BiVO4, resulting in the production of superoxide radical (O2•−) and hydroxyl radical (OH) in the conduction band of BiVO4. Simultaneously, the rich holes in the valence band of g-C3N4 oxidized Rh B directly to promote the photocatalytic degradation reaction.  相似文献   

13.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

14.
张爱平  张进治 《物理学报》2009,58(4):2336-2344
采用水热合成法,选择不同比例的起始原料、反应温度、反应时间、pH值和表面活性剂,制备出不同形貌和结构的BiVO4粉末.采用X射线衍射、透射电子显微镜、扫描电子显微镜、拉曼、傅里叶红外和紫外-可见吸收光谱技术对产物进行分析表征.结果表明,提高nBi/nV或反应液pH值,可得到纯的单斜晶系白钨矿型BiVO4粉末;水热温度和水热时间的不同则得到不同尺寸和内部结构的BiVO4粉末.另外,不同表面活性剂的加入则主要影响BiVO4的微观形貌. 关键词: 4')" href="#">BiVO4 水热法 光催化  相似文献   

15.
The Ag+/BiVO4 photocatalyst was fabricated through a facile hydrothermal method by using K6V10O28·9H2O as the vanadium source. The impact of Ag+ on the product's structure and morphology was studied. It was shown that the amount of Ag+ has no effect on the product’s crystal phases but plays an important role on the morphology of the nanoparticles that construct the shell of BiVO4 microspheres. In addition, the Ag+-doped photocatalysts have much higher photocatalytic activities in removing RhB and MB under the UV light illumination than the pure BiVO4. A possible photocatalytic mechanism was proposed in photoexcitation of the BiVO4 electrons which subsequently captured by the dopant. The present work may offer a novel route to reach higher photocatalytic activity by doping the Ag+ in the semiconductor catalysts.  相似文献   

16.
Porous organic carbon-doped titania (C-TiO2) nanomaterials and their composites with Ag nanoparticles (Ag/C-TiO2) were synthesized by an eggshell membrane templating method, and their structural and photocatalytic properties were systematically characterized. These nanomaterials, exhibiting a macroscopic morphology of a thin film, are composed of interwoven tubes, and the tube wall consists of nanocrystals. The doped organic carbon was composed of the active carbon and carbonate species, which could form a layer around the surface of TiO2 nanoparticles, while the silver was incorporated into Ag/C-TiO2 composites as separated Ag nanoparticles. The degradation of methylene blue under visible light irradiation was employed to evaluate the photocatalytic activity of these as-prepared TiO2-based materials. Both C-TiO2 and Ag/C-TiO2 nanomaterials showed higher photocatalytic activity than pure TiO2 material–commercial Degussa P25. These results can be accounted for the coupling effect of the incorporation of carbon species and Ag nanoparticles.  相似文献   

17.
The InVO4/TiO2 nanojunction composites with different weight ratio of 1:10, 1:25, 1:50 and 1:100 were successfully constructed using an ion impregnate method, followed by calcining temperature 400 °C for 2 h in Ar. The sono- and photo-catalytic activities of the InVO4/TiO2 nanojunction composites were evaluated through the degradation of methyl orange (MO) in aqueous solution under ultrasonic and visible light irradiation, respectively. The experimental results determined that the (1:50) InVO4/TiO2 nanojunction composite has exhibited the highest sonocatalytic activity. It can be ascribed to vectorial charge transfer at the co-excited InVO4/TiO2 interface under ultrasonic irradiation, results in the complete separation of electrons and holes. Interestingly, the (1:25) InVO4/TiO2 nanojunction composite displayed superior photocatalytic activity for MO degradation under visible light, indicating that InVO4 as a narrow band gap sensitizer can expand photocatalytic activity of TiO2 to visible region, and the charge transfer can be formed from high energy level of InVO4 conduction band to the low energy level of TiO2 conduction band in a present of excited InVO4 alone under visible light irradiation. The sono- and photo-catalytic activities of the InVO4/TiO2 nanojunction composites were found to be dependent significantly on different InVO4 contents, which can be explained by the influence of charge transfer on the basis of the work functions of different catalysis mechanism.  相似文献   

18.
In this paper, WxTi1−xO2 solid solutions (x = 0.000, 0.005, 0.010, 0.015, and 0.020) microspheres were synthesized with an aerosol-assisted flow synthesis method. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the as-prepared catalysts were measured by the degradation of rhodamine B (RhB) under visible light irradiation (λ ≥ 420 nm). All the solid solutions exhibited higher photocatalytic activities than pure TiO2 and the W0.015Ti0.985O2 solid solution possessed the highest photocatalytic activity. The degradation constant of RhB on W0.015Ti0.985O2 solid solution catalyst was about 15 times of that of the pure TiO2 and 25 times of that of Degussa P25, respectively. This study provides an effective method to prepare visible light photocatalysts on a large scale.  相似文献   

19.
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high catalytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanoparticles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanocomposite, which can act as an excellent bifunctional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.  相似文献   

20.
Poly-o-aminobenzoate (POA) was prepared by oxidizing o-aminobenzoic acid with (NH4)2S2O8 in an acidic solution. POA was adsorbed on TiO2 nanocrystal surface to obtain a POA-TiO2 nanocomposite. The polymerization reaction, structure, adsorption reaction on TiO2 surface, and visible light sensitization effect of the polymer adsorbed on TiO2 surface were studied by FT-IR and UV-visible spectra, cyclic voltammetry, and measurements of visible light photoelectrochemical and photocatalytic activities. Three kinds of POA with different long conjugate structures can be formed. These polymers have large absorbance in wide visible light region. POA molecules can be adsorbed on TiO2 surface by anchoring their carboxylate groups to the TiO2 surface with a multi-bridging chelating mode, which causes formation of the POA-TiO2 nanocomposite with a high stability. POA adsorbed on the TiO2 nanocrystal showed high visible light sensitization effect in the photocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号