首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   

2.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   

3.
采用接枝共聚合成了羧甲基纤维素钠、丙烯酸与N,N′-亚甲基双丙烯酰胺的交联凝胶, 研究了这类凝胶在不同pH值的缓冲溶液中的溶胀行为, 发现在酸性介质中凝胶的溶胀动力学行为表现出过溶胀平衡特性(overshooting effect), 即凝胶先发生溶胀到最大值, 然后再逐渐消溶胀到平衡. 这种现象可归因于凝胶溶胀过程中羧基之间通过氢键所产生的协同物理交联. 较之凝胶的组成, 缓冲溶液的pH值对过溶胀平衡现象的影响更为显著. 前者是因为凝胶羧基的总摩尔分数并不随两组分结构单元摩尔数的改变而改变, 羧基之间通过氢键形成的物理交联程度在交联剂摩尔分数接近的条件下变化不大; 后者是由于溶液的pH值显著影响凝胶羧基的质子化程度, 进而影响羧基之间通过氢键形成的物理交联程度. 凝胶在酸性介质中的溶胀过程符合E. Díez-Peña等提出的溶胀动力学定量模型, 理论曲线与实验数据有较好的相关性. 凝胶在pH≥5.0的缓冲溶液中的溶胀不产生过溶胀平衡现象, 这一现象归因于完全离子化的羧基之间不能形成物理交联. 凝胶的溶胀过程遵循Schott二级溶胀动力学.  相似文献   

4.
New poly(azo) amino-chitosan compounds were obtained from the azo coupling reaction of N-benzyl chitosan and diazonium salts. The thermal behavior of these compounds was studied by thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), TG coupled with a Fourier-transform infrared, and differential scanning calorimetry (DSC). TG/DTG curves of chitin–chitosan polymer showed two thermal events attributed to water loss and decomposition of the polysaccharide after cross-linking reactions. Thermal analysis of the poly(azo) amino-chitosan compounds showed that the decomposition temperatures decreased when compared to the starting chitin–chitosan and N-benzyl chitosan. DSC results showed an agreement with the TG/DTG analyses. Thermal behavior of poly(azo) amino-chitosans suggest that these compounds could be considered as potential thermal sensors.  相似文献   

5.
Chemical composition of oils and fats used in the biodiesel synthesis can influence in processing and storage conditions, due to the presence of unsaturated fatty acids. An important point is the study of the biodiesel thermal stability to evaluate its quality using thermal analysis methods. In this study the thermal stabilities of the poultry fat and of their ethyl (BEF) and methyl (BMF) biodiesels were determined with the use of thermogravimetry (TG/DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), in different atmospheres. The TG/DTG curves of the poultry fat in synthetic air presented three decomposition steps while only one step was observed in nitrogen (N2) atmosphere. The DSC results indicated four exothermic enthalpic transitions in synthetic air and an endothermic transitions in N2 atmosphere attributed to the combustion process and to the volatilization and/or decomposition of the fatty acids, respectively. For both biodiesels the TG/DTG curves in air indicated two mass loss steps. In the DSC curves four exothermic transitions were observed in synthetic air besides an endothermic one in N2 atmosphere.  相似文献   

6.
A lactose‐containing monomer, N‐(2‐lactosylethyl)acrylamide, was synthesized and polymerized with N‐hydroxyethyl acrylamide and 1 wt % of N, N'‐methylenebis(acrylamide) and potassium persulfate as the initiator to produce hydrogels. The weight percent of N‐(2‐lactosylethyl)acrylamide were increased from 0 to 100% in increments of 10%. Hydrogels were successfully produced with up to 90 wt % of N‐(2‐lactosylethyl)acrylamide. Gelation was confirmed by inverted vial tests and rheology measurements. The as‐prepared hydrogels were used for papain stabilization against heat burden and papain that was loaded into hydrogels showed 45% more activity after heating as compared to papain that was heated without hydrogel stabilization. This hydrogel stabilization technique has potential applications in preserving enzyme activity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2507–2514  相似文献   

7.
Bagasse samples from four different sugarcane were directly collected as the residues of milling in a processing plant. The samples were dried at 105 °C, compressed to small granules and then their TG/DTA and DSC curves in synthetic air were recorded. Similar thermogravimetric curves were obtained for the different samples and they exhibited four mass loss steps. However, the analysis of the exotherm DSC peaks showed that the oxidation of the organic matter resulted different enthalpy values (ΔH/kJ g−1).  相似文献   

8.
The dehydration process of Co(II), Cu(II) and Zn(II) methanesulfonates was studied by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) techniques in dynamic N2 atmosphere. The TG/DTG curves show that all of them contain four crystallization water molecules, which are lost in two steps. The peak temperature and dehydration enthalpies ΔH were measured from DSC curves for each compound. The effect of procedural variables on the TG and DSC curves was investigated. In this work, the procedural variables included heating rate, Al pan state (unsealed and sealed) and sample mass.  相似文献   

9.
Novel interpenetrating network (IPN) hydrogels (PNIPAAm/clay/PAAm hydrogels) based on poly(N‐isopropylacrylamide) (PNIPAAm) crosslinked by inorganic clay and poly(acrylamide) (PAAm) crosslinked by organic crosslinker were prepared in situ by ultraviolet (UV) irradiation polymerization. The effects of clay content on temperature dependence of equilibrium swelling ratio, deswelling behavior, thermal behavior, and the interior morphology of resultant IPN hydrogels were investigated with the help of Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), scanning electron microscope (SEM). Study on temperature dependence of equilibrium swelling ratio showed that all IPN hydrogels exhibited temperature‐sensitivity. DSC further revealed that the temperature‐sensitivity was weakened with increasing amount of clay. Study on deswelling behavior revealed that IPN hydrogels had much faster response rate when comparing with PNIPAAm/clay hydrogels, and the response rate of IPN hydrogels could be controlled by clay content. SEM revealed that there existed difference in the interior morphology of IPN hydrogels between 20 [below lower critical solution temperature (LCST)] and 50 °C (above LCST), and this difference would become obvious with a decrease in clay content. For the standpoint of applications, oscillating swelling/deswelling behavior was investigated to determine whether properties of IPN hydrogels would be stable for potential applications. Bovine serum albumin (BSA) was used as model drug for in vitro experiment, the release data suggested that the controlled drug release could be achieved by modulating clay content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 96–106, 2009  相似文献   

10.
A series of an ionic hydrogels composed of N,N‐diethylaminoethyl methacrylamide (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP), and itaconic acid were synthesized by free‐radical cross‐linking copolymerization in water–ethanol mixture by using N,N‐methylenebis(acrylamide) as the cross‐linker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylenediamine as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross‐linked ionic poly(N,N‐diethylaminoethyl methacrylamide‐coN‐vinyl‐2‐pyrrolidone) [P(DEAEMA/VP)] hydrogels at different pH agreed with the modified Flory–Rehner equation based on the affine network model and the ideal Donnan theory. The swelling process in buffer solutions at various pH was found to be Fickian‐type diffusion. The pH‐reversibility and on–off switching properties of the P(DEAEMA/VP) hydrogels may be considered as good candidate to design novel drug‐delivery system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2819–2828, 2005  相似文献   

11.
Thermal and thermo-oxidative stability of some poly(siloxane-azomethine)s obtaining starting from bis(formyl-p-phenoxymethyl)tetramethyldisiloxane and different organic diamines have been investigated by TG+DTG+DSC simultaneous analyses performed in argon flow and air static atmosphere, respectively. TG, DTG and DSC curves of each polymer showed three or four successive degradation steps at different temperatures according to the composition of the sample and the gaseous atmosphere in which the thermal analysis was performed. For each process, the following parameters were evaluated: total mass loss, temperature corresponding to the maximum reaction rate, maximum reaction rate, temperature corresponding to certain mass loss. In order to determine the thermal and thermo-oxidative stabilities of investigated polymers, the following values were determined: T x% — temperature corresponding to x% mass loss, and %Δm T — mass loss at a given temperature T. The obtained orders of stability were correlated with the structure of investigated polymers.  相似文献   

12.
At four different charge densities, ionic hydrogels based on N,N-dimethylacrylamide (DMAAm), acrylamide (AAm), and itaconic acid (IA) were synthesized by free-radical cross-linking copolymerization in water with N,N-methylenebis(acrylamide) (BAAm) as the cross-linker, ammonium persulfate (APS) as the initiator, and N,N,N′,N′-tetramethylenediamine (TEMED) as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross-linked ionic poly(N,N-dimethylacrylamide-co-acrylamide) [P(DMAAm-co-AAm)] hydrogels at different pHs agreed with the modified Flory-Rehner equation based both on the phantom network and affine network models and the ideal Donnan theory. In addition, the kinetics of swelling of the hydrogels was studied in pH 2, 5 and 9 buffer solutions. The swelling curves exhibited the characteristic features of transport process, apparently the Fickian diffusion of fast rates.  相似文献   

13.
3‐Acryloxypropylhepta(3,3,3‐trifluoropropyl) polyhedral oligomeric silsesquioxane (POSS) was synthesized and used as a modifier to improve the thermal response rates of poly(N‐isopropylacrylamide) (PNIPAM) hydrogel. The radical copolymerization among N‐isopropylacrylamide (NIPAM), the POSS macromer and N,N′‐methylenebisacrylamide was performed to prepare the POSS‐containing PNIPAM cross‐linked networks. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) showed that the POSS‐containing PNIPAM networks displayed the enhanced glass transition temperatures (Tg's) and improved thermal stability when compared with plain PNIPAM network. The POSS‐containing PNIPAM hydrogels exhibited temperature‐responsive behavior as the plain PNIPAM hydrogels. It is noted that with the moderate contents of POSS, the POSS‐containing PNIPAM hydrogels displayed much faster response rates in terms of swelling, deswelling, and re‐swelling experiments than plain PNIPAM hydrogel. The improved thermoresponsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase‐separated morphology in the hydrogels, that is, the POSS structural units in the hybrid hydrogels were self‐assembled into the highly hydrophobic nanodomains, which behave as the microporogens and promote the contact of PNIPAM chains and water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 504–516, 2009  相似文献   

14.
Conventional polyacrylamide hydrogels prepared from the free radical polymerization between acrylamide and N,N′‐methylenebisacrylamide (NMBA) have been frequently used in the biochemical technique like the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) to resolve protein mixtures. In this study, we have prepared an alternative polyacrylamide hydrogel from the cross‐linking of acrylamide and N,N′‐bisacrylylcystamine (BACy). In addition, we have compared the BACy‐based hydrogel with the NMBA‐based polyacrylamide hydrogel for their physical properties such as swelling ratio, shear modulus, crosslink density and morphology. Moreover, we further determined whether BACy‐based polyacrylamide hydrogel could be applied to SDS‐PAGE and proteomics research. The results showed that this type of hydrogel is capable of separating proteins and facilitates further in‐gel protein digestion and the following protein identifications by mass spectrometry. In summary, our study provides a basis for the putative application of BACy‐based hydrogels.  相似文献   

15.
The effect of concanavalin A on the structure of polymer hydrogels prepared via the free-radical copolymerization of acrylamide, N-(2-D-glucos)acrylamide, and N,N′-methylene-bis(acrylamide) is studied. When complexed with N-(2-D-glucos)acrylamide, concanavalin A is involved in copolymerization as a macromolecular crosslinking agent. This circumstance ensures a decrease of the degree of swelling of hydrogels in aqueous solutions with an increase in the concentration of concanavalin A in the initial monomer mixture. After the addition of glucose to an aqueous solution, the complex of concanavalin A with units of N-(2-D-glucos)acrylamide in the crosslinked copolymer dissociates and the degree of swelling of hydrogels increases considerably. Dissociation of the complex occurs at a strictly specified concentration of glucose in the solution that depend on the content of N-(2-D-glucos)acrylamide units in the copolymer. This phenomenon can be used for the controlled release of insulin previously introduced into the hydrogel through a change in the concentration of glucose in the solution.  相似文献   

16.
Super water absorbent polymer hydrogels were synthesized by frontal polymerization. These materials were obtained by copolymerizing N‐isopropyl acrylamide (NIPAAm) and 3‐sulfopropyl acrylate potassium salt (SPAK) in the presence of N,N′‐methylene‐bis‐acrylamide as a crosslinker. It was found that their swelling behavior in water can be easily tuned by using either the appropriate monomer ratio or the amount of the crosslinker used. Namely, the swelling ratio was found to range from about 1000% for the NIPAAm homopolymer in the presence of 5.0 mol % of crosslinker, up to 35,000% for the sample containing 87.5 mol % of SPAK and 1.0 mol % of crosslinker. The affinity toward water was also confirmed by contact angle analysis. Moreover, the obtained hydrogels exhibit a thermoresponsive behavior, with a lower critical solution temperature of about 28–30 °C. This value is close to that of poly(NIPAAm) but with a swelling capability that dramatically increases as the amount of SPAK increases. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Ionically cross-linked polyampholytic hydrogels were synthesized by redox copolymerization of acrylamide and an ionic complex of (N,N-diethylamino)ethyl methacrylate and acrylic acid (designated as PADA hydrogel). The swelling behavior of the hydrogels in water indicated that a minimal equilibrium swelling ratio is found when the molar ratio of anionic/cationic monomers was 1.55. In NaCl solution, the hydrogels exhibited the typical swelling behavior of conventional polyampholytic gels. Their equilibrium swelling ratios increased with an increase in the NaCl concentration. In solutions of multivalent ions (CaCl2 and trisodium citrate solutions), the equilibrium swelling ratios of the hydrogels increased first and were then followed by a decrease with an increase in salt concentration. Interestingly, an unexpected abrupt swelling phenomenon was observed when the fully swollen hydrogels in salt solution were transmitted to pure water. The unique swelling behavior of PADA hydrogels depends not only on the molar ratio of the anionic/cationic monomers but also on the valency of the ions.  相似文献   

18.
The study of the incorporation of rare earth elements as additives in Y zeolites is a very interesting field of research, mainly by its potential application as additives in catalytic cracking process. In this work was studied the thermal and structural properties of cerium, holmium and samarium supported on HZSM-12 zeolite. The obtained materials were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), nitrogen adsorption, thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). TG/DSC/DTA analyses showed that the dehydration temperatures of RE/HZSM-12 zeolites (RE=Ce, Ho, Sm) increase in relation to pure HZSM-12. The acid properties were investigated by pyridine thermo desorption via TG. The results showed two events of mass loss attributed to elimination of pyridine adsorbed on the weak+medium acid sites and on the strong acid sites.  相似文献   

19.
Several hydrogels were prepared using radiolytic polymerization of aqueous solutions of acrylamide or acrylamide containing appropriate comonomer such as acrylic acid, maleic acid, itaconic acid, and maleic anhydride. The hydrogels have been prepared at an irradiation dose of 30 kGy. The effects of the chemical structure of the monomer(s) and crosslinking agents on the yield of homopolymer(s) or copolymers have been studied. These crosslinking agents include N, N′‐methylene dimethacrylate (MDA) and N, N′‐methylene bisallyamide (MBA). The hydrogels obtained were characterized using swelling technique, thermal and spectroscopic analysis. The results obtained showed that the prepared samples are able to reject sodium ions and are not able to recover the Basic Blue Dye from their aqueous solution. © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Double-network hydrogels were prepared using well-defined first networks comprising interconnected amphiphilic “in-out” star copolymers synthesized via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, and second networks based on a photopolymerized mixture of acrylamide and N,N′-methlyenebisacrylamide. All first and double-network hydrogels were characterized in terms of their aqueous degrees of swelling and mechanical properties in compression. The most hydrophobic first and double-network hydrogels exhibited the best mechanical properties, which may be attributed to their low aqueous swelling degrees and good mesoscale organization in water as revealed using small-angle neutron scattering (SANS) which showed that the size of the formed hydrophobic domains could be controlled by the polymer conetwork structure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2161–2174  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号