首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热解是废弃人造板高效回收利用的方式,人造板中所含胶黏剂是其不同于生物质的主要特征。为了有效环保地利用热解技术处理废弃人造板,解明人造板热解过程中其所含脲醛树脂胶黏剂(UF)对木材热解特性的影响,深入探索UF对人造板中木材各组分的作用机制,以杨木及木材的三种主要组分(纤维素、半纤维素、木素)为研究对象,创新性地依据杨木的化学组成,以纤维素、木聚糖和木素配制成模型物,并加入UF模拟人造板的构成。利用热重红外光谱联用(TG-FTIR)分析法,对比分析了加入UF前后模型物以及杨木各主要组分的热失重特性及气相演变规律。热重及红外结果表明,UF促进了纤维素热解过程中水和羧酸类物质的生成。UF与木素结合生成热不稳定的含氮结构,释放大量氨气,并且在200~300 ℃区间内参与了木素的热解并直接影响木素热解产物的生成。由此推测,在人造板热解过程中,木材三种主要组分中与UF作用的主要成分是木素。  相似文献   

2.
Nitrogen in biomass is mainly in forms of proteins (amino acids). Glycine, glutamic acid, aspartic acid, leucine, phenylalanine and proline are the major amino acids in agricultural straw. The six amino acids were pyrolyzed individually at 800 °C in a tubular reactor in an argon atmosphere. Each amino acid sample was then pyrolyzed individually with cellulose, hemicellulose or lignin with 1:1 mixing ratio by weight under the same condition. The emissions of HCN and NH3 were detected with a Fourier transform infrared (FTIR) spectrometer. The extent of interaction between the amino acids with cellulose, hemicellulose or lignin was determined by comparing the yields of HCN and NH3 from co-pyrolysis with those from single amino acid pyrolysis under the same condition. The results indicate that the structure of the amino acid has a significant effect on the nitrogen transformation during pyrolysis. The mixtures undergo solid-state decomposition reactions during co-pyrolysis. The extent of interaction between the amino acids with cellulose, hemicellulose or lignin depends on the amino acid types and the components in biomass. Although single proline and leucine form no char, they give a significant amount of nitrogen-containing char when co-pyrolyzed with cellulose, hemicellulose and lignin. HCN and NH3 yields and nitrogen conversion pathway from amino acid pyrolysis are influenced by cellulose, hemicellulose and lignin.  相似文献   

3.
TaC was deposited on graphite substrate with different TaCl5 partial pressure at 800 °C and 1200 °C by chemical vapor deposition. Microstructures and texture structures of the prepared coatings were researched with X-ray diffraction and scanning electronic microscopy. When the coating deposition process is controlled by surface reaction kinetics (800 °C), TaCl5 partial pressure had little influence on the microstructure and texture structure of the coating. When the coating formation process is controlled by diffusion kinetics (1200 °C), the microstructure, texture structure of the prepared TaC grains vary greatly with TaCl5 partial pressure. In the diffusion controlled process, the increasing of TaCl5 partial pressure will result in the changing of gas supersaturation, and then the occurrence of secondary nucleation, which is the main reason for the changing of coating morphology and texture structure. With the help of competitive growth in (1 0 0) and (1 1 1) directions, the formation mechanism of the different texture coatings are discussed in detail. In addition, a diffusion model of deposition species around step-edge-corner was also proposed to explain the growth mechanism of the texture coatings.  相似文献   

4.
Adsorption, desorption and structure of the surface chemical compounds formed upon interaction of dibenzothiophene (DBT) in solution of n-octane with the sulfur-selective Ag/Titania sorbent for the ultradeep desulfurization of liquid fuels was characterized by the temperature-programmed X-ray photoemission spectroscopy (XPS) and Electron Spin Resonance. Adsorption of DBT proceeds via chemisorption via the oxygen-containing surface groups. Desorption of DBT and thermal regeneration of the “spent” Ag/Titania were studied by the complementary temperature-programmed XPS and ESR from 25 °C to 525 °C, in the high vacuum vs. air. The XPS spectrum of the pure DBT is reported for the first time.  相似文献   

5.
Anatase phase TiO2 and nitrogen (N) doped TiO2 thin films were synthesized by an ultrasonic spray pyrolysis technique on c-Si (100) substrates in the temperature range 300-550 °C. The former used a precursor solution of titanium oxy acetylacetonate in methanol whereas the later used a titanium oxy acetylacetonate hexamine mixture in methanol. Homogeneity across the film’s thickness and the nature of the film-substrate interface were studied by dynamic depth profiling acquired using secondary ion mass spectrometry SIMS. The stoichiometry and bonding state of various species present in the films were studied using X-ray photoelectron spectroscopy (XPS). N-doping was confirmed by both SIMS and XPS. XPS studies revealed that the nitrogen content of the films synthesized at 300 °C (3.2%) is high compared to that of films made at 350 °C (1.3%).  相似文献   

6.
This study investigates the cellulose–lignin interactions during fast pyrolysis at 100–350 °C for better understanding fundamental pyrolysis mechanism of lignocellulosic biomass. The results show that co-pyrolysis of cellulose and lignin (with a mass ratio of 1:1) at temperatures < 300 °C leads to a char yield lower than the calculated char yield based on the addition of individual cellulose and lignin pyrolysis. The difference between the experimental and calculated char yields increases with temperature, from ~2% 150 °C to ~6% at 250 °C. Such differences in char yields provide direct evidences on the existence of cellulose–lignin interactions during co-pyrolysis of cellulose and lignin. At temperatures below 300 °C, the reductions in both lignin functional groups and sugar structures within the char indicate that co-pyrolysis of cellulose and lignin enhances the release of volatiles from both cellulose and lignin. Such an observation could be attributed to two possible reasons: (1) the stabilization of lignin-derived reactive species by cellulose-derived reaction intermediates as hydrogen donors, and (2) the thermal ejection of cellulose-derived species due to micro-explosion of liquid intermediates from lignin. In contrast, at temperatures ≥ 300 °C, co-pyrolysis of cellulose and lignin increases char yields, i.e., with the difference between the experimental and calculated char yields increasing from ~1% at 300 °C to ~8% at 350 °C. The results indicate that the cellulose-derived volatiles are difficult to diffuse through the lignin-derived liquid intermediates into the vapor phase, leading to increased char formation from co-pyrolysis of cellulose and lignin as temperature increases. Such an observation is further supported by the increased retention of cellulose functional groups in the char from co-pyrolysis of cellulose and lignin.  相似文献   

7.
Mong Hsu rubies have been heat treated in air at 1100, 1200, 1300, 1400, 1500 and 1600 °C. Their visual appearance and surface analysis (XPS) after each stage of heating have been monitored. The characteristic blue core regions of untreated ruby become slightly faded at 1100 °C and completely disappear at temperatures above 1500 °C. Trace amounts of Na, Ca, Si and Fe were found on the surface of untreated stones. Ti was first detected after heating to 1100 °C. Plots of detected surface concentrations of elements versus temperature show that the highest concentration of Fe occurred at 1300 °C while surface concentrations of Ti appeared to show two maxima near 1300 and 1500 °C. The results suggest that both the changing oxidation state of Fe2+ to Fe3+ and the diffusion of the Fe and Ti ions with temperature are responsible for the color changes through decreasing Fe2+ to Ti4+ charge transfer.  相似文献   

8.
The transport of Na through the polycrystalline ceramic arc tube of high intensity discharge lamps has been investigated. This complex process consists of several steps: solution in the ceramics, diffusion through the ceramics, leaving the bulk phase, evaporation from the surface. Among the listed processes the kinetics of the diffusion was examined in the temperature range 400-1200 °C, separately from other disturbing effects. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to determine the concentration depth profiles. The obtained results confirmed that the grain boundary diffusion plays an important role in the transport process of sodium through the ceramic wall. The bulk and the grain boundary diffusion coefficients and the temperature dependencies of these transport processes have been determined. The activation energy of Na bulk diffusion is 56.5 ± 6.7 kJ/mol at 900-1200 °C, respectively the activation energies of Na grain boundary diffusion amount to 97.5 ± 21.6 kJ/mol in the temperature range 700-1100 °C and 7.7 ± 4.0 × 10−2 kJ/mol at 400-700 °C. The preexponential factor of the bulk diffusion was found to be Do = 5.1 × 10−15 ± 9.5 × 10−17 cm2/s in the temperature range 900-1200°C, whereas the preexponential factors of grain boundary diffusion are Do = 1.1 × 10−10 ± 1.1 × 10−11 cm2/s at 700-1100 °C and Do = 7.5 × 10-15 ± 1.5 × 10−17 cm2/s at 400-700 °C.  相似文献   

9.
The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo6+ and Mo2+) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO3. Some carbon and oxygen signals were consistent with the presence of CO and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 °C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo6+ and Mo5+) and carbide (Mo2+) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 °C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar+ ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform.  相似文献   

10.
Thermal oxidation temperature dependence of 4H-SiC MOS interface   总被引:1,自引:0,他引:1  
The thermal oxidation temperature dependence of 4H-silicon carbide (SiC) is systematically investigated using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage (C-V) measurements. When SiC is thermally oxidized, silicon oxycarbides (SiCxOy) are first grown and then silicon dioxide (SiO2) is grown. It is identified by XPS that the SiO2 films fall into two categories, called SiC-oxidized SiO2 and Si-oxidized SiO2 in this paper. The products depend on thermal oxidation temperature. The critical temperature is between 1200 and 1300 °C. The interface trap density (Dit) of the sample possessing Si-oxidized SiO2, at thermal oxidation temperature of 1300 °C, is lower than SiC-oxidized SiO2 at and below 1200 °C, suggesting that a decrease of the C component in SiO2 film and SiO2/SiC interface by higher oxidation temperature improves the metal-oxide-semiconductor (MOS) characteristics.  相似文献   

11.
The oxide formation on thin copper films deposited on Si wafer was studied by XPS, SEM and Sequential Electrochemical Reduction Analysis SERA. The surfaces were oxidized in air with a reflow oven as used in electronic assembly at temperatures of 100 °C, 155 °C, 200 °C, 230 °C and 260 °C. The SERA analyses detected only the formation of Cu2O but the XPS analysis done for the calibration of the SERA equipment proved also the presence of a CuO layer smaller than 2 nm above the Cu2O oxide. The oxide growth follows a power-law dependence on time within this temperature range and an activation energy of 33.1 kJ/mol was obtained. The wettability of these surfaces was also determined by measuring the contact angle between solder and copper substrate after the soldering process. A correlation between oxide thickness and wetting angle was established. It was found that the wetting is acceptable only when the oxide thickness is smaller than 16 nm. An activation energy of 27 kJ/mol was acquired for the spreading of lead free solder on oxidized copper surfaces.From wetting tests on copper surfaces protected by Organic Solderability Preservatives (OSP), it was possible to calculate the activation energy for the thermal decomposition of these protective layers.  相似文献   

12.
13.
In this report, YAG:Ce phosphors were synthesized by spray-drying method. The effects of annealing temperature on crystal structure, morphology and photoluminescence property (PL) of as-prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectrofluorometer, respectively. The XRD patterns showed all the samples are in consistence with a single garnet phase, and the location of strongest peak shifts to smaller angle with increasing the annealing temperature. The SEM micrographs revealed the sample annealed at 1200 °C appears to be a spherical polycrystalline aggregate; as the samples were annealed at 1300?1400 °C, spherical grains obviously grow up; but the sample annealed at over 1400 °C forms an irregular bulk. The emission spectra of samples indicated the PL of samples annealed at 1200?1400 °C improve with increasing the annealing temperature because of the diffusion of Si4+ ions; whereas the PL of sample annealed at the temperature over 1400 °C decreases likely resulting from inflection effects of multiangular shape of grains. Therefore, the samples annealed at 1400 °C are suitable for gaining phosphor with high brightness and good morphology.  相似文献   

14.
In the present paper procedures are described for spray pyrolysis deposition of YSZ films (0.1-30 μm in thickness) with 8 or 15 mole % of YO1.5 on different substrates. Aqueous or ethylene glycol solutions of Y-Zr-citrates were used as starting material and O2 as carrier gas. The crystal structure and the morphology of the films were studied.The optimal deposition and post-deposition annealing conditions were defined, taking into account the desired film thickness and characteristics. Substrate temperatures of 250 °C during the deposition followed by heating for 10 min to 400 °C after every spraying and to 590 °C after every three sprayings with final annealing at 590 °C for 2 h in static air atmosphere were found to be suitable for the production of dense, uniform and cracks-free films.  相似文献   

15.
Surface structure, determined by scanning tunneling microscopy (STM), surface morphology, determined by atomic force microscopy (AFM), and surface composition, determined by X-ray photoelectron spectroscopy (XPS) of 20.0 nm Si0.8Ge0.2 quantum dots formed at 800 °C and encapsulated with 0-10 nm of Si at 500 °C and 800 °C are presented. It is observed that the quantum dot surface morphology changes during the Si encapsulation at 800 °C by the smoothing of the quantum dots. The height of the quantum dots decreases faster than can be accounted for from the amount of Si deposited, indicating that there is movement of material out of the quantum dots during the encapsulation process. Encapsulation at 500 °C results in a retention of the quantum dot surface morphology with increased Ge segregation compared to Si encapsulation at 800 °C. We conclude that the changing surface morphology at 800 °C is not the result of Ge segregation but due to intermixing resulting from the tensile strain of Si depositing on SiGe.  相似文献   

16.
ZnO nanostructures have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst and at atmospheric argon pressure. The influence of the source temperature on the morphology and luminescence properties of ZnO nanostructures has been investigated. ZnO nanowires, nanoflowres and nanotetrapods have been formed upon the Si(1 0 0) substrates at different source temperatures ranging from 1100 to 1200 °C. Room temperature photoluminescence (PL) spectra showed increase green emission intensity as the source temperature was decreased and ZnO nanowires had the strongest intensity of UV emission compared with other nanostructures. In addition, the growth mechanism of the ZnO nanostructures is discussed based on the reaction conditions.  相似文献   

17.
Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10−5 and was steadily reduced down to 5 × 10−9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.  相似文献   

18.
Optically transparent Al2O3 films has been synthesized, on quartz substrates at 500, 600 and 700 °C, from 0.02 M aluminum acetyl acetonate (Al(acac)3) in ethanol, by using ultrasonic spray pyrolysis technique. The films synthesized at 500, 600 and 700 °C are amorphous having average particle sizes 27 ± 6, 18 ± 3 and 14 ± 3, respectively. The films are found to be 95% optically transparent in the visible region. The optical transparency of the films in the ultraviolet region is found to increase with increase in deposition temperature. The observed increase in optical band gap and decrease in refractive index is attributed to the decrease in particle size with increase in deposition temperature. The stoichiometry and chemical bonding of the amorphous film studied using XPS and FTIR spectroscopy revealed the presence chemisorbed oxygen.  相似文献   

19.
The present study is focused on the influence of vacuum thermal treatment on surface/interface electronic properties of Si/Ge multilayer structures (MLS) characterized using X-ray photoelectron spectroscopy (XPS) technique. Desired [Si(5 nm)/Ge(5 nm)]×10 MLS were prepared using electron beam evaporation technique under ultra high vacuum (UHV) conditions. The core-level XPS spectra of as-deposited as well as multilayer samples annealed at different temperatures such as 100 °C, 150 °C and 200 °C for 1 h show substantial reduction in Ge 2p peak integrated intensity, whereas peak intensity of Si 2p remains almost constant. The complete interdiffusion took place after annealing the sample at 200 °C for 5 h as confirmed from depth profiling of annealed MLS. The asymmetric behaviour in intensity patterns of Si and Ge with annealing was attributed to faster interdiffusion of Si into Ge layer. However, another set of experiments on these MLS annealed at 500 °C suggests that interdiffusion can also be studied by annealing the system at higher temperature for relatively shorter time duration.  相似文献   

20.
Evolution of the (0 0 0 1) α-Al2O3 surface morphology upon annealing was studied using atomic force microscopy. The annealing protocol included temperatures of 1200 and 1500 °C and different time. Vicinal Al2O3 (0 0 0 1) surfaces annealed at 1200 °C exhibit initial localized step coalescence that evolves into terrace-and-step with island morphology that persists for several hours. Annealing at 1500 °C results in initial step coalescence on a global scale, and yields a terrace-and-step morphology with an indication of step bunching after longer annealing times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号