首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Two of the chiroptical spectroscopic methods, namely optical rotatory dispersion (ORD) and electronic circular dichroism (ECD), have been around for several decades. But their use in determining the absolute configuration and predominant conformation is gaining renewed interest with the availability of quantum mechanical methods for predicting ORD and ECD. Two other methods, namely vibrational circular dichroism (VCD) and vibrational Raman optical activity (VROA), are relatively new and offer convenient approaches for deducing the structural information in chiral molecules. With the availability of quantum mechanical programs for predicting VCD and VROA, these methods have attracted numerous new researchers to this area. This review summarizes the latest developments in these four areas and provides examples where more than one method has been used to confirm the information obtained from individual methods.  相似文献   

2.
The absolute configuration of the (+)-1,1-dimethyl-2-phenylethyl phenyl sulfoxide is determined to be (R), using three different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD) and specific rotation. Four solution conformations are identified for 1,1-dimethyl-2-phenylethyl phenyl sulfoxide. In each of the methods used, experimental data for the enantiomers of 1,1-dimethyl-2-phenylethyl phenyl sulfoxide were measured in the solution phase and concomitant quantum mechanical calculations of corresponding properties were carried out using density functional theory with B3LYP functional and 6-31G* and 6-31+G basis sets. Additional VCD and ECD calculations were also undertaken with 6-311G(2d,2p) basis set. A comparison of theoretically predicted data with the corresponding experimental data has allowed us to elucidate the absolute configuration and predominant conformations of (+)-1,1-dimethyl-2-phenylethyl phenyl sulfoxide.  相似文献   

3.
The absolute stereochemistry of chiral molecules is ideally established to atomic resolution by X-ray crystallographic analysis. However, chiroptical spectroscopies, namely electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD) and Raman optical activity (ROA), play important complementary roles in establishing relative and absolute sterochemistries as well as allowing determinations of optical purity. A brief summary of chiroptical spectroscopies is presented, along with guidance to their advantages and disadvantages. The application of ECD to verifying that single crystals selected for crystallographic analysis are indeed representative of bulk material is described.  相似文献   

4.
Three forms of chiroptical spectroscopies, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD) have been employed to study the configuration and conformational properties of the three molecules: (S)-3-phenylcyclopentanone, (S)-3-phenylcyclohexanone, and (S)-3-phenylcycloheptanone (including (S)-3-phenylcyclopentanone-2,2,5,5-d4 and (S)-3-phenylcyclohexanone-2,2,6,6-d4). ECD and VCD spectra in the mid-IR for the three molecular systems are marginally dependent on fine conformational details, as interpreted in terms of standard DFT computational methods, with common spectroscopic features to the three systems clearly identified. Accounting for vibronic coupling mechanisms reproduces the structuring of ECD n→π band. The ORD curves are quite similar for the three types of molecules, but their interpretation highlights a crucial role played by conformations of the cycloalkanone ring in the case of (S)-3-phenylcycloheptanone. The same conclusions are reached by considering the VCD spectra in the CH-stretching region.  相似文献   

5.
Electronic circular dichroism (ECD), optical rotatory dispersion (ORD), and vibrational circular dichroism (VCD) spectra of hibiscus acid dimethyl ester have been measured and analyzed in combination with quantum chemical calculations of corresponding spectra. These results, along with those reported previously for garcinia acid dimethyl ester, reveal that none of these three (ECD, ORD, or VCD) spectroscopic methods, in isolation, can unequivocally establish the absolute configurations of diastereomers. This deficiency is eliminated when a combined spectral analysis of either ECD and VCD or ORD and VCD methods is used. It is also found that the ambiguities in the assignment of absolute configurations of diastereomers may also be overcome when unpolarized vibrational absorption is included in the spectral analysis.  相似文献   

6.
章慧  齐爱华  李丹  李荣兴 《大学化学》2022,37(1):220-235
概述了19世纪以来光学活性和手性光谱的发现和发展,着重对旋光色散(ORD)、电子圆二色(ECD)和振动圆二色(VCD)光谱的发展背景和基本原理作出介绍。其中特别提及华人科学家徐光宪和徐云洁在手性光谱发展历程中的杰出贡献。  相似文献   

7.
A series of enantiopure, monodisperse alleno-acetylenic cyclooligomers were synthesized. The single-crystal X-ray structures of the cyclic trimer and hexamer were resolved, providing insights into the symmetry of these molecules. Electronic circular dichroism (ECD), optical rotatory dispersion (ORD), Raman spectroscopy, and vibrational circular dichroism (VCD) data were analyzed with the aid of theoretical calculations. This multidimensional approach ultimately provided general guidelines that are useful for designing carbon-rich compounds with intense chiroptical properties.  相似文献   

8.
The chiral oxadiazol-3-one 2 has recently been shown to exhibit myocardial calcium entry channel blocking activity, substantially higher than that of diltiazem. To determine the enantioselectivity of this activity, the enantiomers of 2 have been resolved using chiral chromatography. The absolute configuration (AC) of 2 has been determined by comparison of density functional theory (DFT) calculations of its vibrational circular dichroism (VCD) spectrum, electronic circular dichroism (ECD) spectrum, and optical rotation (OR) to experimental VCD, ECD, and OR data. All three chiroptical properties yield identical ACs; the AC of 2 is unambiguously determined to be S(+)/R(-).  相似文献   

9.
The development of density functional theory (DFT) methods for the calculation of vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and transparent spectral region optical rotation (OR) has revolutionized the determination of the absolute configurations (ACs) of chiral molecules using these chiroptical properties. We report the first concerted application of DFT calculations of VCD, ECD, and OR to the determination of the AC of a natural product whose AC was previously undetermined. The natural product is the alkaloid schizozygine, isolated from Schizozygia caffaeoides. Comparison of DFT calculations of the VCD, ECD, and OR of schizozygine to experimental data leads, for each chiroptical technique, to the AC 2R,7S,20S,21S for the naturally occurring (+)-schizozygine. Three other alkaloids, schizogaline, schizogamine, and 6,7-dehydro-19beta-hydroxyschizozygine, have also been isolated from S. caffaeoides and shown to have structures closely related to schizozygine. Assuming a common biosynthetic pathway, their ACs are defined by that of schizozygine.  相似文献   

10.
We report the synthesis of the water‐soluble cryptophanol derivative 1 and the study of the chiroptical properties of its two enantiomers (>99 % ee) by polarimetry, electronic circular dichroism (ECD), and vibrational circular dichroism (VCD). We show that cryptophanol 1 exhibits unusual chiroptical properties in water under basic conditions (pH>12). For instance, the shapes of the ECD and VCD spectra of 1 in water were strongly dependent on the nature of the alkali metal ions (Li+, Na+, K+, Cs+) surrounding the cryptophane and whether or not a guest molecule is present inside the cavity of the host. To the best of our knowledge, this is the first example in which the nature of these counterions governs the chiroptical properties of a host molecule. Moreover, specific ECD spectra were obtained depending on the size of the guest molecules. This makes 1 a good sensor for small neutral molecules in aqueous solvent. Finally, VCD experiments associated with DFT calculations show that the chiroptical changes can be directly correlated to the presence of charges close to the aromatic rings and with a conformational change of the alkyl chains upon encapsulation.  相似文献   

11.
Chiroptical techniques are increasingly employed for assigning the absolute configuration of chiral molecules through comparison of experimental spectra with theoretical predictions. For assignment of natural products, electronic chiroptical spectroscopies such as electronic circular dichroism (ECD) are routinely applied. However, the sensitivity of electronic spectral parameters to experimental conditions and the theoretical methods employed can lead to incorrect assignments. Vibrational chiroptical methods (vibrational circular dichroism, VCD, and Raman optical activity, ROA) provide more reliable assignments, although they, in particular ROA, have been little explored for assignments of natural products. In this study, the ECD, VCD, and ROA chiroptical spectroscopies are evaluated for the assignment of the absolute configuration of a highly flexible natural compound with two stereocenters and an asymmetrically substituted double bond, the marine antibiotic Synoxazolidinone A (SynOxA), recently isolated from the sub-Arctic ascidian Synoicum pulmonaria. Conformationally averaged nuclear magnetic resonance (NMR), ECD, Raman, ROA, infrared (IR) and VCD spectral parameters are computed for the eight possible stereoisomers of SynOxA and compared to experimental results. In contrast to previously reported results, the stereochemical assignment of SynOxA based on ECD spectral bands is found to be unreliable. On the other hand, ROA spectra allow for a reliable determination of the configuration at the double bond and the ring stereocenter. However, ROA is not able to resolve the chlorine-substituted stereogenic center on the guanidinium side chain of SynOxA. Application of the third chiroptical method, VCD, indicates unique spectral features for all eight SynOxA isomers in the theoretical spectra. Although the experimental VCD is weak and restricted by the limited amount of sample, it allows for a tentative assignment of the elusive chlorine-substituted stereocenter. VCD chiroptical analysis of a SynOxA derivative with three stereocenters, SynOxC, results in the same absolute configuration as for SynOxA. Despite the experimental challenges, the results convincingly prove that the assignment of absolute configuration based on vibrational chiroptical methods is more reliable than for ECD.  相似文献   

12.
Three different chiroptical spectroscopic methods, namely, optical rotation, electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) have been evaluated for studying the aggregation of sodium dodecylsulfate (SDS), an achiral surfactant, using garcinia acid disodium salt (GADNa) as a chiral probe. The specific rotation and ECD of GADNa are found to be altered by the aggregation of SDS, suggesting for the first time that achiral surfactants can be characterized with chiroptical spectroscopy using appropriate chiral probes. In addition, a chiral compound, fluorenyl methyloxy carbonyl l-leucine sodium salt (FLNa) is found for the first time to behave as a surfactant in water, with 205 ?(2) surface area per molecule at the air-water interface, critical micelle concentration (CMC) of 0.18 M, and Gibbs energy of micellization of -14 kJ/mol. The specific rotation of FLNa in water is found to increase with concentration beyond CMC, suggesting the formation of chiral aggregates. Different conformations of FLNa amenable to micellization have been identified using quantum chemical conformational analysis and their specific rotations calculated. The formation of lamellar aggregates of FLNa in water is suggested to be the cause for increase in specific rotation with concentration beyond CMC.  相似文献   

13.
The enantiomers of 3,3,3',3'-tetramethyl-1,1'-spirobi[3 H,2,1]benzoxaselenole have been separated on a chiral preparative chromatographic column. The experimental vibrational circular dichroism (VCD) spectra have been obtained for both enantiomers in CH(2)Cl(2). The theoretical VCD spectra have been obtained by means of density functional theoretical calculations with the B3 LYP density functional. From a comparison of experimental and theoretical VCD spectra, the absolute configuration of an enantiomer with positive specific rotation in CH(2)Cl(2) at 589 nm is determined to be R. This conclusion has been verified by comparing results of experimental optical rotatory dispersion (ORD) and electronic circular dichroism (ECD) to predictions of the same properties using the B3 LYP functional for the title compound.  相似文献   

14.
The absolute configurations (ACs) of the iridoid natural products, plumericin (1) and isoplumericin (2), have been re-investigated using vibrational circular dichroism (VCD) spectroscopy, electronic circular dichroism (ECD) spectroscopy, and optical rotatory dispersion (ORD). Comparison of DFT calculations of the VCD spectra of 1 and 2 to the experimental VCD spectra of the natural products, (+)-1 and (+)-2, leads unambiguously to the AC (1R,5S,8S,9S,10S)-(+) for both 1 and 2. In contrast, comparison of time-dependent DFT (TDDFT) calculations of the ECD spectra of 1 and 2 to the experimental spectra of (+)-1 and (+)-2 does not permit definitive assignment of their ACs. On the other hand, TDDFT calculations of the ORD of (1R,5S,8S,9S,10S)-1 and -2 over the range of 365-589 nm are in excellent agreement with the experimental data of (+)-1 and (+)-2, confirming the ACs derived from the VCD spectra. Thus, the ACs initially proposed by Albers-Sch?nberg and Schmid are shown to be correct, and the opposite ACs recently derived from the ECD spectra of 1 and 2 by Els?sser et al. are shown to be incorrect. As a result, the ACs of other iridoid natural products obtained by chemical correlation with 1 and 2 are not in need of revision.  相似文献   

15.
The synthesis and the chiroptical properties of the two enantiomers of the hexacarboxylic acid cryptophane-A derivative, 1, are described in this article. The chiroptical and binding properties of 1 toward achiral and chiral guests have been investigated in water under basic conditions by polarimetry, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and (1)H NMR spectroscopy. These experiments reveal that the (1)H NMR spectra of 1 are very sensitive to the nature of the guest trapped in its cavity whereas ECD and VCD spectra remain unchanged. We also show that the two enantiomers of 1 are able to distinguish between the two enantiomers of a series of small chiral epoxides. The enantiodiscrimination increases with the size of the chiral guest whereas the corresponding binding constants decrease. In contrast to what was observed for other water-soluble cryptophanes, the molecular recognition process is found independent of the nature of the counterions surrounding host 1, shedding light on the importance of the chemical structure of cryptophanes on their binding and chiroptical properties.  相似文献   

16.
Proteins are hetero-sequence polypeptides with complex folded structures whose topology and structural details are vital to their biological function. In this paper, uses of electronic circular dichroism (ECD) in the uv, infrared (IR) absorption and its chiroptical variant, vibrational circular dichroism (VCD) for study of residual structure in peptide models and unfolded proteins under various conditions are addressed. The complementary information gained from analysis of the short range vibrational coupling (with IR and VCD) vs. long range dipole coupling (from ECD) allow detection of partial ordering. The vibrational techniques show an ability to detect local order often missed by ECD (or fluorescence). Perturbation with thermal and solvent variation can then probe stabilities. Furthermore the rapid timescales allow such spectra to follow dynamic changes. Examples from protein folding of cytochrome c and various beta containing proteins are given.  相似文献   

17.
A new water-soluble cryptophane 1 derivative (penta-hydroxyl cryptophane-A) has been synthesized from cryptophanol-A and the chiroptical properties of its two enantiomers MM-1 and PP-1 have been studied by polarimetry, electronic circular dichroism (ECD), and vibrational circular dichroism (VCD). Cryptophane 1 shows specific circular dichroism responses upon complexation that depend on the size of the guest and on the nature of the counterion (Li(+), Na(+), K(+), Cs(+)) present in the solution. In LiOH and NaOH solutions, chiroptical changes induced by the encapsulation of guests and by the presence of cations in the vicinity of hosts can be interpreted from molecular dynamics (MD) and ab initio calculations by subtle conformational changes of the bridges. In KOH solution, the exchange dynamics is dependent on the size of the guest molecules, whereas in CsOH solution no encapsulation effect is observed whatever the size of the guest molecule. This last behavior comes from the fact that host 1 exhibits a very high affinity for cesium cations.  相似文献   

18.
章慧 《大学化学》2017,32(3):1-14
与电子能级跃迁相关的电子圆二色(ECD)光谱因其研究对象宽泛,与涉及振动能级的振动圆二色(VCD)光谱互补,已成为应用于手性立体化学研究的集成手性光谱的主流表征手段。本文概述了确定手性金属配合物绝对构型的三种主要方法,详细介绍了ECD光谱法在确定手性金属配合物绝对构型中的应用,其中着重强调了激子手性方法,并对集成手性光谱学未来的发展趋势做出了展望。  相似文献   

19.
Recently, it was observed that infrared (IR) and vibrational circular dichroism (VCD) calculations including deuterated hydroxyl groups in phenolic and saccharide moieties improved significantly the agreement with experimental data obtained in methanol-d4. In the present study, the relative and absolute configurations of three methanol-soluble caffeic acid ester derivatives 13, isolated from Tithonia diversifolia, were established by a combined use of experimental and calculated 13C NMR chemical shifts, as well as electronic circular dichroism (ECD) and VCD spectroscopies. Interestingly, the attempt to reproduce the deuteration pattern arising from possible isotopic exchange in methanol-d4 solution led to nearly mirror image calculated VCD spectra for 1 when compared to the non-deuterated molecule with the same absolute configuration. This latter fact can potentially lead to absolute configuration misassignments. A closer inspection of the vibrational chiroptical properties of 1 revealed that the deuteration status of the tertiary hydroxyl group at C-2 is critical for the correct reproduction of experimental VCD data in protic solvents. Therefore, in the case of stereochemical analysis of polar chiral natural product molecules, a combination of VCD and ECD is recommended.  相似文献   

20.
The stereochemistry of products obtained via a chemical reaction may not always be obvious from the reaction scheme utilized. The identification of convenient methods to determine the stereochemistry in such cases is highly desirable. To identify these methods, we considered a substituted 4-vinyl-1-azabicyclo[3.2.0]hept-3-en-7-one that undergoes spontaneous oxidation in the atmosphere at room temperature, yielding an epoxide with unknown absolute configuration. To determine the absolute configuration of the resulting epoxide, three different approaches have been utilized: (a) experimental NOE measurements; (b) experimental electronic circular dichroism (ECD) spectroscopic measurements and their analysis using corresponding quantum chemical predictions at the B3LYP/aug-cc-pVDZ level; (c) experimental vibrational circular dichroism (VCD) spectroscopic measurements and their analysis using corresponding quantum chemical predictions at the B3LYP/aug-cc-pVDZ level. It was found that the NOE data could not provide enough proof for assigning the absolute configuration, while ECD data could not provide enough discrimination to distinguish between the two possible stereoisomers. On the other hand, VCD spectroscopic analysis provided enough discrimination to distinguish between the two possible stereoisomers, and the absolute configuration could be assigned with confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号