首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120718篇
  免费   1467篇
  国内免费   414篇
化学   65773篇
晶体学   1232篇
力学   4891篇
综合类   5篇
数学   11796篇
物理学   38902篇
  2016年   1231篇
  2015年   943篇
  2014年   1278篇
  2013年   4720篇
  2012年   3325篇
  2011年   4307篇
  2010年   2666篇
  2009年   2451篇
  2008年   3858篇
  2007年   3883篇
  2006年   3979篇
  2005年   3900篇
  2004年   3394篇
  2003年   3062篇
  2002年   2740篇
  2001年   3374篇
  2000年   2417篇
  1999年   1906篇
  1998年   1583篇
  1997年   1702篇
  1996年   1627篇
  1995年   1696篇
  1994年   1491篇
  1993年   1456篇
  1992年   1682篇
  1991年   1661篇
  1990年   1603篇
  1989年   1616篇
  1988年   1615篇
  1987年   1614篇
  1986年   1523篇
  1985年   2085篇
  1984年   2220篇
  1983年   1841篇
  1982年   2159篇
  1981年   1985篇
  1980年   2023篇
  1979年   2029篇
  1978年   2149篇
  1977年   2043篇
  1976年   2075篇
  1975年   2024篇
  1974年   1859篇
  1973年   2082篇
  1972年   1264篇
  1971年   965篇
  1970年   898篇
  1969年   920篇
  1968年   1047篇
  1967年   1101篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
1.
Supercapacitors (SCs) with high energy density and power density are a research hotspot. Herein, we report a flexible porous carbon membrane supercapacitor prepared by electrospinning polyacrylonitrile (PAN) with γ-cyclodextrin-MOF (γ-CD-MOF) and then carbonizing at 900 °C. BET results showed that the supercapacitor retained the skeleton of γ-CD, γ-CD-MOF and the pores formed by the spun-fibers, which were 0.73, 1.09 and 23–186 nm, respectively, showing a high specific surface area of 134.7 m2/g. The hierarchically porous structures ensure rapid charge transfer and ion diffusion, resulting in the PAN/γ-CD-MOF carbon electrode with a high capacity of 283.3 F/g. Moreover, the supercapacitor had a high energy density up to 17.5 Wh/kg and power density up to 6 kW/kg. Significantly, it showed excellent cycle stability with a capacitance retention of 97.5% after 6000 cycles. This work provides a supramolecular strategy to construct a flexible porous carbon membrane, which has potential for supercapacitor applications.  相似文献   
2.
Mathematical Programming - Scenario generation is the construction of a discrete random vector to represent parameters of uncertain values in a stochastic program. Most approaches to scenario...  相似文献   
3.
Annals of Operations Research - Selecting a vegetation layer design goes along with determining its future irrigation need. Therefore, it is essential to take a design decision that is minimising...  相似文献   
4.
Atopic dermatitis is characterized by leukocyte migration into the skin dermis and typically driven by excessive chemokine production at the site of inflammation. Conventional topical formulations such as gels, creams, and ointments are insufficient for this treatment because of low penetration of drug molecules into the targeted skin tissues. Herein, using a simple, green, sustainable strategy, we have developed novel primary zein nanoparticles embedded in curcumin (Cur) and coated with silk sericin (ZHSCs) for the topical delivery of Cur to penetrate into the dermis and exercise anti-dermatitis effects on the lesion with minimal side-effects. Transdermal delivery experiments and porcine skin fluorescence imaging indicated that ZHSCs facilitate the penetration of Cur across the epidermis layer of skin to reach deep-seated sites. Notably, ZHSCs = 1:0.25 (zein-to-silk sericin mass ratios of 1:0.25) markedly elevated the skin permeability and cumulative turnover of Cur transferred, which were provided a greater than a 3.8-fold increase relative to free Cur. The special nanoparticles of ZHS = 1:0.25 possessed the deepest localization depth and experience a transition of the particle structure and core-shell separation after penetrating into the dermis of skin. In a cell model of dermatitis induced by tumor necrosis factor α/interferon γ co-stimulation, compared with free Cur, Cur-loaded ZHS nanoparticles down-regulated the generation of inflammatory cytokines and chemokines in keratinocytes through suppression of the nuclear translocation of NF-κBp65 and hence exerted an anti-dermatitis effect. This strategy may provide new avenues and direction for the demanding issues of valid topical delivery systems.  相似文献   
5.
Journal of Applied Spectroscopy - The aromaticity in the lowest triplet T1-state of NH-tautomers of corrole free bases with different peripheral substitution architecture was investigated using...  相似文献   
6.
Yuan  K.  Zhu  W. D. 《Experimental Mechanics》2022,62(4):667-676
Background

In-plane vibration is significant to a structure and has been accurately solved by many numerical methods; however, there are still not enough studies on its experimental measurement.

Objective

This work aims to propose a non-contact and fast way to measure dense full-field in-plane vibration of a plate structure, which has high frequencies and low response magnitudes.

Methods

A novel three-dimensional (3D) continuously scanning laser Doppler vibrometer (CSLDV) system that contains three CSLDVs is developed to conduct full-field scanning of a plate with free boundary conditions under sinusoidal excitation to measure its 3D vibrations. Calibration among the three CSLDVs in the 3D CSLDV system based on the geometrical model of its scan mirrors is conducted to adjust their rotational angles to ensure that three laser spots can continuously and synchronously move along the same two-dimensional scan trajectory on the plate. The demodulation method is used to process the measured response to obtain in-plane operating deflection shapes (ODSs) of the plate.

Results

Four in-plane ODSs are obtained in the frequency range of 0–5000 Hz. Modal assurance criterion (MAC) values between in-plane ODSs from 3D CSLDV and step-wise scanning laser Doppler vibrometer (SLDV) measurements are larger than 95%. MAC values between ODSs from 3D CSLDV measurements and corresponding mode shapes from the finite element model of the plate are larger than 91%.

Conclusions

Results from 3D CSLDV measurements have good accuracy compared to those from SLDV measurements and numerical calculation, and the 3D CSLDV system can scan much more measurement points in much less time than the SLDV system.

  相似文献   
7.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery.  相似文献   
8.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   
9.
Journal of Applied Mechanics and Technical Physics - A self-equilibrated stress field for an incompressible sphere is constructed based on a non-Euclidean continuum model. The...  相似文献   
10.
The first principle computational screening was performed to investigate the effect of selected dopants for Li3PS4 sulfide solid electrolyte on its ionic conductivity and stability toward moisture. The results suggest that substitution P5+ using isovalent cations whose electronegativity (EN) value is closer to the value of S has more significant effects on the ionic conductivity, whereby W5+ and Sb5+ can improve most. Similarly, aliovalent cation substitutions with compensating changes in the lithium-ion concentration, particularly those with a lower oxidation state and higher EN, such as Cu2+, effectively enhance the lithium-ion conductivity in this structure. For cation dopants, it is found that ionic conductivity improvement of Li3PS4 is the synergetic effect of EN and oxidation number of the dopant as well as the material's lattice parameter change. Oxides of the considered cation dopants can also improve the ionic conductivity of the material but have much lower lithium-ion conductivity than the cases of cation dopants. However, the metal oxide dopants, particularly those derived from soft Lewis' acid cations, show a marginal improvement in moisture stability of the Li3PS4 electrolyte. The effect of halides and metal halide dopants on the lithium-ion conductivity and moisture stability of Li3PS4 electrolyte are also studied. It is found that metal halides are more effective than any other dopants in improving the ionic conductivity of Li3PS4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号