首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
柔性板的时滞H∞控制的理论与实验研究   总被引:1,自引:0,他引:1  
赵童  陈龙祥  蔡国平 《力学学报》2011,43(6):1043-1053
以柔性板为对象, 开展时滞H∞控制的理论与实验研究. 首先给出柔性板的时滞动力学方程; 然后利用Lyapunov-Krasovskii泛函和自由权矩阵法, 推导了闭环时滞系统渐近稳定的矩阵不等式;进而根据该矩阵不等式采用参数调节法及遗传算法, 研究了如下两类控制设计问题: 已知控制律求解最大稳定时滞量, 已知最大稳定时滞量求解H∞控制律; 最后对理论研究成果进行了数值仿真和实验验证. 结果显示, 获得的H∞控制律能够有效地抑制板的弹性振动, 所确定出的保证系统稳定性的时滞区间更接近实际情况.   相似文献   

2.
van der Pol型时滞系统的两参数余维一Hopf分岔及其稳定性   总被引:5,自引:0,他引:5  
研究具有三次非线性时滞项的van der Pol型时滞系统随两参数(时滞量和增益系数)余维一Hopf分岔,说明了线性化特性方程随两参数变化时的根的分布和Hopf分岔存在性;通过构造中心流形并且使用范式方法确定出Hopf分岔的方向以及周期解的稳定性;分析了时滞量对所论系统发生Hopf分岔的影响。  相似文献   

3.
In this paper, we investigate the stability and bifurcation of a class of coupled nonlinear relative rotation system with multi-time delay feedbacks. Using dissipative system Lagrange equation, the dynamics equation of coupled nonlinear relative rotation system with three masses is established. The dynamical behaviors of the system under multi-time delay feedbacks, with two state variables, are discussed. First, characteristic roots and the stable regions of time delay are determined by direct method. The relation between two time delays ratio or time delay feedbacks gains and the stable regions of time delay is analyzed. Second, the direction and stability of Hopf bifurcation are decided by normal form theorem and center manifold argument. Finally, numerical simulation can confirm the validity of the conclusion.  相似文献   

4.
A new approach to the study of delay systems, applicable to physiological control systems and other systems where little information about the time delays is available, is examined. The method is based on the fact that stability information can be deduced from the statistical properties of the probability distribution that encodes the structure of the time delay. The main statistical variables used are the usual expectation parameter,E, and a modified variance, calledrelative variance and denotedR, that is invariant under time scale changes. Recent work of the author has shown that stability often improves asR increases whileE remains fixed. A four-parameter family of delay models is analysed in this paper, and the (E, R) pair is found to be a reliable indicator of stability over the global parameter domain of the family.  相似文献   

5.
Zhou  Xueyong  Cui  Jingan 《Nonlinear dynamics》2011,63(4):779-792

In this paper, a delay-differential mathematical model that described HIV infection of CD4+ T cells is analyzed. The effect of time delay on stability of the equilibria of the infection model has been studied. And the sufficient criteria for stability switch of the infected equilibrium and the local and global asymptotic stability of the uninfected equilibrium are given. By using the geometric stability switch criterion in the delay-differential system with delay-dependent parameters, we present that stable equilibria become unstable as the time delay increases. Numerical simulations are carried out to explain the mathematical conclusions.

  相似文献   

6.
In this paper, the dynamics of a pair of van der Pol oscillators with delayed velocity coupling is studied by taking the time delay as a bifurcation parameter. We first investigate the stability of the zero equilibrium and the existence of Hopf bifurcations induced by delay, and then study the direction and stability of the Hopf bifurcations. Then by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups, we investigate the spatio-temporal patterns of Hopf bifurcating periodic oscillations. We find that there are different in-phase and anti-phase patterns as the coupling time delay is increased. The analytical theory is supported by numerical simulations, which show good agreement with the theory.  相似文献   

7.
In this paper, a delay-differential mathematical model that described HIV infection of CD4+ T cells is analyzed. The effect of time delay on stability of the equilibria of the infection model has been studied. And the sufficient criteria for stability switch of the infected equilibrium and the local and global asymptotic stability of the uninfected equilibrium are given. By using the geometric stability switch criterion in the delay-differential system with delay-dependent parameters, we present that stable equilibria become unstable as the time delay increases. Numerical simulations are carried out to explain the mathematical conclusions.  相似文献   

8.
Lijun Pei 《力学快报》2013,3(6):063012
Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, the sufficient conditions of the uniform asymptotic stability are first presented for the delayed time-varying linear differential equations with any time delay by employing the Dini derivative, Lozinskii measure and the generalized scalar Halanay delayed differential inequality. They are especially based on the estimation of the arbitrary solutions but not the fundamental solution matrix since their solutions' space is infinite-dimensional. Then some sufficient conditions of the stability, asymptotic stability and uniform asymptotic stability of the delayed time-varying linear system with a sufficiently small time delay are reported by employing Taylor expansion and Dini derivative. It implies that these stabilities can be guaranteed by the Lozinskii measure of the matrix composing of the time delay and the coefficient matrices of the system.  相似文献   

9.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

10.
This paper presents a systematic study on aeroelastic stability of a two-dimensional airfoil with a single or multiple time delays in the feedback control loops. Firstly, the delay-independent stability region of the aeroelastic system with a single time delay is determined on the basis of the generalized Sturm criterion for polynomials. Then, the stability switches with variations in time delay are analyzed when the system parameters fall out of the delay-independent stability region. Flutter boundaries of the controlled aeroelastic system as time delay varies are predicted in a continuous way by the predictor-corrector technique. Finally, two methods, the polynomial eigenvalue method and the infinitesimal generator method, are introduced to investigate the stability of the controlled aeroelastic system with multiple time delays. Numerical simulations are made to demonstrate the effectiveness of all the above approaches.  相似文献   

11.
以汽车悬架系统为研究对象,采用理论和试验相结合的方法对考虑主动时滞的悬架系统控制特性进行分析。首先建立含时滞悬架系统动力学模型,分析系统的控制稳定性。理论和仿真结果均表明,采用传统二次型最优控制律不能保证含时滞系统的稳定性。系统时滞量存在稳定区间,时滞超出稳定区间时系统将失稳发散;为了保证控制系统的稳定性,采用状态变换法设计了含时滞系统的主动控制律,计算表明,该控制律可以保证系统稳定性。研究还发现,时滞量的变化会使系统振动幅值产生较大改变,为此在控制系统中引入主动时滞,研究主动时滞对系统振动特性的影响,计算表明,合理的主动时滞可以降低系统振动幅值;为验证结果的正确性,搭建了悬架时滞主动控制试验平台,通过对相同工况下仿真结果与试验结果进行对比,发现两者具有较好的一致性;而由于悬架受到的路面激励具有随机性,采用含时滞系统的主动控制律对路面随机激励下的悬架系统进行控制分析,发现当主动时滞为0.04 s时,车身加速度均方根值比无主动时滞降低了39.4%,说明主动时滞对悬架控制的有效性。本文研究对时滞主动控制的理论研究具有重要的促进作用。  相似文献   

12.
It is well-known that wave-type equations with memory, under appropriate assumptions on the memory kernel, are uniformly exponentially stable. On the other hand, time delay effects may destroy this behavior. Here, we consider the stabilization problem for second-order evolution equations with memory and intermittent delay feedback. We show that, under suitable assumptions involving the delay feedback coefficient and the memory kernel, asymptotic or exponential stability are still preserved. In particular, asymptotic stability is guaranteed if the delay feedback coefficient belongs to \(L^1(0, +{\infty })\) and the time intervals where the delay feedback is off are sufficiently large.  相似文献   

13.
This paper considers the effect of time delays on the saturation control of first-mode vibration of a stainless-steel beam. Time delay is commonly caused by measurements of the system states, transport delay, on-line computation, filtering and processing of data, calculating and executing of control forces as required in control processing. The method of multiple scales is employed to obtain the analytical solutions of limit cycles and their stability and to investigate the bifurcations of the system under consideration. All the predictions from analytical solutions are in agreement with the numerical simulation. The analytical results show that a delay can change the range of the saturation control, either widening or shrinking the effective frequency bandwidth. Thus, vibration control of a beam can be achieved using an appropriate choice of the delay in a self-feedback signal. From the examples illustrated, this paper provides a positive example that time delay can also be utilized to suppress vibration in systems when time delay cannot be neglected.  相似文献   

14.
In this paper, a fuzzy logic controller equipped with training algorithms is developed such that the H ?? tracking performance should be satisfied for a model-free nonlinear fractional order time delay system which is infinite dimensional in nature and time delay is a source of instability. In order to deal with the linguistic uncertainties caused from delay terms, the adaptive time delay fuzzy logic system is constructed to approximate the unknown time delay system functions. By incorporating Lyapunov stability criterion with H ?? tracking design technique, the free parameters of the adaptive fuzzy controller can be tuned on line by output feedback control law and adaptive law. Moreover, the tracking error and external disturbance can be attenuated to arbitrary desired level. The numerical results show the effectiveness of the proposed adaptive H ?? tracking scheme.  相似文献   

15.
刘强  陈俐 《应用力学学报》2020,(2):486-493,I0002
考虑含时滞反馈的影响,建立楔式制动系统动力学模型,运用多尺度方法对黏滑界面附近区域进行受迫主共振求解,分析时滞量、楔角与系统刚度对系统幅频响应的影响,应用Routh-Hurwitz判据分析系统稳定性的影响因素。基于解析解的分析表明:稳态幅值和稳定性边界都随时滞量发生周期性变化,周期内较大的时滞量引起鞍结分岔,并发展至不稳定多解;楔角和系统刚度增加引起主共振振幅增大,并扩大了不稳定区域。  相似文献   

16.
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions. The project supported by the National Natural Science Foundation of China (19972025)  相似文献   

17.
Wang  Hui  Yang  Youping 《Nonlinear dynamics》2023,111(10):9681-9698

In this paper, we propose a non-smooth Filippov system that describes the interaction of the pest and natural enemy with considering time delay, which represents the change in the growth rate of natural enemies before it is released to prey on pests. When the number of the pest is below the threshold, no control is applied; otherwise, control measures will be adopted. We discuss the stability of the equilibria and the existence of Hopf bifurcation. The results show that the Hopf bifurcation occurs when the time delay passes through some critical values. By applying the Filippov convex method, we obtain the dynamics of the sliding mode. The solutions of the system eventually tend toward the regular equilibrium, the pseudo-equilibrium or a standard periodic solution. Numerical simulations show that time delay plays an important role in local and global sliding bifurcations. We can obtain boundary focus bifurcations from boundary node bifurcations by varying time delay. Furthermore, touching, buckling and crossing bifurcations can be obtained frequently by increasing time delay. The results can provide some insights in pest control.

  相似文献   

18.
In this paper, we compare two approaches for determining the amplitude equations; namely, the integral equation method and the method of multiple scales. To describe and compare the methods, we consider three examples: the parametric resonance of a Van der Pol oscillator under state feedback control with a time delay, the primary resonance of a harmonically forced Duffing oscillator under state feedback control with a time delay, and the primary resonance together with 1:1 internal resonance of a two degree-of-freedom model. Using the integral equation method and the method of multiple scales, the amplitude equations are obtained. The stability of the periodic solution is examined by using the Floquet theorem together with the Routh–Hurwitz criterion (without time delay) and the Nyquist criterion (with time delay). By comparison with the solution obtained by the numerical integration, we find that the accuracy of the integral equation method is much better.  相似文献   

19.
In this paper, a delayed predator-prey model with dormancy of predators is investigated. It shows that time delay in the prey-species growth can lead to the occurrence of Hopf bifurcation with stability switches at a coexistence equilibrium. The computing formulas of stability and direction of the Hopf bifurcating periodic solutions are given. Under appropriate conditions, the uniform persistence of this model with time delay is proved. In this simple model, multiple periodic solutions coexist. Through numerical simulation, it is shown that different values of time delay can generate or eliminate chaos. Biologically, our results imply that dynamical behaviors of this system with time delay strongly depend on the initial density of this model and the time delay of the growth of the prey.  相似文献   

20.
Considering the macroeconomic model of money supply, this paper carries out the corresponding extension of the complex dynamics to macroeconomic model with time delays. By setting the parameters, we discuss the effect of delay variation on system stability and Hopf bifurcation. Results of analysis show that the stability of time-delay systems has important significance with the length of time delay. When time delay is short, the stable point of the system is still in a stable region; when time delay is long, the equilibrium point of the system will go into chaos, and the Hopf bifurcation will appear in certain conditions. In this paper, using the normal form theory and center manifold theorem, the periodic solutions of the system are obtained, and the related numerical analysis are also given; this paper has important innovation-theoretical value and acts as important actual application in macroeconomic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号