首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a Crank–Nicolson linear finite volume element scheme is developed to solve a hyperbolic optimal control problem. We use the variational discretization technique for the approximation of the control variable. The optimal convergent order O(h2 + k2) is proved for the numerical solution of the control, state and adjoint‐state in a discrete L2‐norm. To derive this result, we also get the error estimate (convergent order O(h2 + k2)) of Crank–Nicolson finite volume element approximation for the second‐order hyperbolic initial boundary value problem. Numerical experiments are presented to verify the theoretical results.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1331–1356, 2016  相似文献   

2.
In this paper, we shall investigate the superconvergence property of quadratic elliptical optimal control problems by triangular mixed finite element methods. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite elements and the control is discretized by piecewise constant functions. We prove the superconvergence error estimate of h2 in L2-norm between the approximated solution and the interpolation of the exact control variable. Moreover, by postprocessing technique, we find that the projection of the discrete adjoint state is superclose (in order h2) to the exact control variable.  相似文献   

3.
Abstract

An optimal control problem for 2D and 3D elliptic equations is investigated with pointwise control constraints. This paper is concerned with the discretization of the control by piecewise linear but discontinuous functions. The state and the adjoint state are discretized by linear finite elements. The paper is focused on similarities and differences to piecewise constant and piecewise linear (continuous) approximation of the controls. Approximation of order h in the L -norm is proved in the main result.  相似文献   

4.
In this article, we investigate local discontinuous Galerkin approximation of stationary convection‐dominated diffusion optimal control problems with distributed control constraints. The state variable and adjoint state variable are approximated by piecewise linear polynomials without continuity requirement, whereas the control variable is discretized by variational discretization concept. The discrete first‐order optimality condition is derived. We show that optimization and discretization are commutative for the local discontinuous Galerkin approximation. Because the solutions to convection‐dominated diffusion equations often admit interior or boundary layers, residual type a posteriori error estimate in L2 norm is proved, which can be used to guide mesh refinement. Finally, numerical examples are presented to illustrate the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 339–360, 2014  相似文献   

5.
In this paper, the weak Galerkin finite element method (WG-FEM) is applied to a pulsed electric model arising in biological tissue when a biological cell is exposed to an electric field. A fitted WG-FEM is proposed to approximate the voltage of the pulsed electric model across the physical media involving an electric interface (surface membrane), and heterogeneous permittivity and a heterogeneous conductivity. This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes. Optimal pointwise-in-time error estimates in L2-norm and H1-norm are shown to hold for the semidiscrete scheme even if the regularity of the solution is low on the whole domain. Furthermore, a fully discrete approximation based on backward Euler scheme is analyzed and related optimal error estimates are derived.  相似文献   

6.
We analyze a finite-element approximation of the stationary incompressible Navier–Stokes equations in primitive variables. This approximation is based on the nonconforming P1/P0 element pair of Crouzeix/Raviart and a special upwind discretization of the convective term. An optimal error estimate in a discrete H1-norm for the velocity and in the L2-norm for the pressure is proved. Some numerical results are presented. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In this article, we study the semidiscrete H 1-Galerkin mixed finite element method for parabolic problems over rectangular partitions. The well-known optimal order error estimate in the L 2-norm for the flux is of order 𝒪(h k+1) (SIAM J. Numer. Anal. 35 (2), (1998), pp. 712–727), where k ≥ 1 is the order of the approximating polynomials employed in the Raviart–Thomas element. We derive a superconvergence estimate of order 𝒪(h k+3) between the H 1-Galerkin mixed finite element approximation and an appropriately defined local projection of the flux variable when k ≥ 1. A the new approximate solution for the flux with superconvergence of order 𝒪(h k+3) is realized via a postprocessing technique using local projection methods.  相似文献   

8.
In this paper, we study a priori error estimates for the finite volume element approximation of nonlinear optimal control problem. The schemes use discretizations based on a finite volume method. For the variational inequality, we use the method of the variational discretization concept to obtain the control. Under some reasonable assumptions, we obtain some optimal order error estimates. The approximate order for the state, costate and control variables is O(h 2) or \(O\left( {{h^2}\sqrt {\left| {\ln h} \right|} } \right)\) in the sense of L 2-norm or L -norm. A numerical experiment is presented to test the theoretical results. Finally, we give some conclusions and future works.  相似文献   

9.
A family of elliptic optimal control problems with pointwise constraints on control and state is considered. We are interested in approximation of the optimal solution by a finite element discretization of the involved partial differential equations. The discretization error for a problem with mixed state constraints is estimated in the semidiscrete case and in the fully discrete scheme with the convergence of order h|ln h| and h 1/2, respectively. However, considering the unregularized continuous problem and the discrete regularized version, and choosing suitable relation between the regularization parameter and the mesh size, i.e., εh 2, a convergence order arbitrary close to 1, i.e., h 1−β is obtained. Therefore, we benefit from tuning the involved parameters.  相似文献   

10.
This paper deals with a control-constrained linear-quadratic optimal control problem governed by the Stokes equations. It is concerned with situations where the gradient of the velocity field is not bounded. The control is discretized by piecewise constant functions. The state and the adjoint state are discretized by finite element schemes that are not necessarily conforming. The approximate control is constructed as projection of the discrete adjoint velocity in the set of admissible controls. It is proved that under certain assumptions on the discretization of state and adjoint state this approximation is of order 2 in L 2(Ω). As first example a prismatic domain with a reentrant edge is considered where the impact of the edge singularity is counteracted by anisotropic mesh grading and where the state and the adjoint state are approximated in the lower order Crouzeix-Raviart finite element space. The second example concerns a nonconvex, plane domain, where the corner singularity is treated by isotropic mesh grading and state and adjoint state can be approximated by a couple of standard element pairs.  相似文献   

11.
In this paper, we investigate problems of approximation for the solution of a system of coupled semi-linear parabolic partial differential equations that model diffusion-reaction problems in chemical engineering. Given that the solutions belong to Hs (0, ∞), we consider finite-element approximations on bounded domains (0, R(h)) such that limh→0[R(h)] = ∞. Optimal convergence estimates are found to depend on the asymptotic behaviour of the solution and its regularity near t = 0. In the L2-norm, they cannot exceed an order of O((;h2/t3/4) + h2[In h]2). For that purpose, a Wheeler-type argument is also generalized to non-coercive elliptic forms. Fully discrete schemes that preserve the positivity of the solutions are also considered. Due to the singularity at t = 0, they lead to estimates of the order O1/4 + h2/t3/4).  相似文献   

12.
We analyze an h-p version Petrov-Galerkin finite element method for linear Volterra integrodifferential equations. We prove optimal a priori error bounds in the L 2- and H 1-norm that are explicit in the time steps, the approximation orders and in the regularity of the exact solution. Numerical experiments confirm the theoretical results. Moreover, we observe that the numerical scheme superconverges at the nodal points of the time partition.  相似文献   

13.
In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superc...  相似文献   

14.
In this article, an optimal control problem subject to a semilinear elliptic equation and mixed control-state constraints is investigated. The problem data depends on certain parameters. Under an assumption of separation of the active sets and a second-order sufficient optimality condition, Bouligand-differentiability (B-differentiability) of the solutions with respect to the parameter is established. Furthermore, an adjoint update strategy is proposed which yields a better approximation of the optimal controls and multipliers than the classical Taylor expansion, with remainder terms vanishing in L .  相似文献   

15.
Lin  Xiuxiu  Chen  Yanping  Huang  Yunqing 《Numerical Algorithms》2020,83(3):1145-1169

In this paper, we investigate a distributed optimal control problem governed by elliptic partial differential equations with L2-norm constraint on the state variable. Firstly, the control problem is approximated by hp spectral element methods, which combines the advantages of the finite element methods with spectral methods; then, the optimality conditions of continuous system and discrete system are presented, respectively. Next, hp a posteriori error estimates are derived for the coupled state and control approximation. In the end, a projection gradient iterative algorithm is given, which solves the optimal control problems efficiently. Numerical experiments are carried out to confirm that the numerical results are in good agreement with the theoretical results.

  相似文献   

16.
The convergence of finite element methods for linear elliptic boundary value problems of second and forth order is well understood. In this article, we introduce finite element approximations of some linear semi-elliptic boundary value problem of mixed order on a two-dimensional rectangular domain Q. The equation is of second order in one direction and forth order in the other and appears in the optimal control of parabolic partial differential equations if one eliminates the control and the state (or the adjoint state) in the first order optimality conditions. We establish a regularity result and estimate for the finite element error of conforming approximations of this equation. The finite elements in use have a tensor product structure, in one dimension we use linear, quadratic or cubic Lagrange elements in the other dimension cubic Hermite elements. For these elements, we prove the error bound O(h 2 + τ k ) in the energy norm and O((h 2 + τ k )(h 2 + τ)) in the L 2(Q)-norm.  相似文献   

17.
In this paper, we use the integral-identity argument to obtain asymptotic error expansions for the mixed finite element approximation of the Maxwell equations on a rectangular mesh. The extrapolation method is applied to improve the accuracy of the approximation via an interpolation postprocessing technique. With the extrapolation, the approximation accuracy can be improved from O(h) to O(h 4) in the L 2-norm. Illustrative numerical results are given to demonstrate the higher order accuracy of the extrapolation method. This research was supported by the National Natural Science Foundation of China (No.10471103), Social Science Foundation of the Ministry of Education of China (06JA630047), Tianjin Natural Science Foundation (07JCYBJC14300).  相似文献   

18.
In this article, we study the dynamics of a piecewise (in time) distributed optimal control problem for the Boussinesq equations which model velocity tracking over time coupled to thermal dynamics. We also study the dynamics of semidiscrete approximation of this problem. We prove that the rates of velocity tracking coupled to thermal dynamics are exponential and that the difference between the solution of the semi‐discrete piecewise optimal control problem and the desired states in L2 and H1 norms decay to zero exponentially as n→∞. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h~(1+min){α,1}) is established for both the displacement approximation in H~1-norm and the stress approximation in L~2-norm under a mesh assumption, where α 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.  相似文献   

20.
In this paper we develop and study a new stabilized finite volume method for the two-dimensional Stokes equations. This method is based on a local Gauss integration technique and the conforming elements of the lowest-equal order pair (i.e., the P 1P 1 pair). After a relationship between this method and a stabilized finite element method is established, an error estimate of optimal order in the H 1-norm for velocity and an estimate in the L 2-norm for pressure are obtained. An optimal error estimate in the L 2-norm for the velocity is derived under an additional assumption on the body force. This work is supported in part by the NSF of China 10701001 and by the US National Science Foundation grant DMS-0609995 and CMG Chair Funds in Reservoir Simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号