首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper extends the Log-robust portfolio management approach to the case with short sales, i.e., the case where the manager can sell shares he does not yet own. We model the continuously compounded rates of return, which have been established in the literature as the true drivers of uncertainty, as uncertain parameters belonging to polyhedral uncertainty sets, and maximize the worst-case portfolio wealth over that set in a one-period setting. The degree of the manager’s aversion to ambiguity is incorporated through a single, intuitive parameter, which determines the size of the uncertainty set. The presence of short-selling requires the development of problem-specific techniques, because the optimization problem is not convex. In the case where assets are independent, we show that the robust optimization problem can be solved exactly as a series of linear programming problems; as a result, the approach remains tractable for large numbers of assets. We also provide insights into the structure of the optimal solution. In the case of correlated assets, we develop and test a heuristic where correlation is maintained only between assets invested in. In computational experiments, the proposed approach exhibits superior performance to that of the traditional robust approach.  相似文献   

2.
We present a robust optimization approach to portfolio management under uncertainty when randomness is modeled using uncertainty sets for the continuously compounded rates of return, which empirical research argues are the true drivers of uncertainty, but the parameters needed to define the uncertainty sets, such as the drift and standard deviation, are not known precisely. Instead, a finite set of scenarios is available for the input data, obtained either using different time horizons or assumptions in the estimation process. Our objective is to maximize the worst-case portfolio value (over a set of allowable deviations of the uncertain parameters from their nominal values, using the worst-case nominal values among the possible scenarios) at the end of the time horizon in a one-period setting. Short sales are not allowed. We consider both the independent and correlated assets models. For the independent assets case, we derive a convex reformulation, albeit involving functions with singular Hessians. Because this slows computation times, we also provide lower and upper linear approximation problems and devise an algorithm that gives the decision maker a solution within a desired tolerance from optimality. For the correlated assets case, we suggest a tractable heuristic that uses insights derived in the independent assets case.  相似文献   

3.
In this paper, we present a robust optimization formulation for dealing with demand uncertainty in a dynamic pricing and inventory control problem for a make-to-stock manufacturing system. We consider a multi-product capacitated, dynamic setting. We introduce a demand-based fluid model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate and all coefficients are time-dependent. A key part of the model is that no backorders are allowed. We show that the robust formulation is of the same order of complexity as the nominal problem and demonstrate how to adapt the nominal (deterministic) solution algorithm to the robust problem.  相似文献   

4.
This paper considers a stochastic facility location problem in which multiple capacitated facilities serve customers with a single product, and a stockout probabilistic requirement is stated as a chance constraint. Customer demand is assumed to be uncertain and to follow either a normal or an ambiguous distribution. We study robust approximations to the problem in order to incorporate information about the random demand distribution in the best possible, computationally tractable way. We also discuss how a decision maker’s risk preferences can be incorporated in the problem through robust optimization. Finally, we present numerical experiments that illustrate the performance of the different robust formulations. Robust optimization strategies for facility location appear to have better worst-case performance than nonrobust strategies. They also outperform nonrobust strategies in terms of realized average total cost when the actual demand distributions have higher expected values than the expected values used as input to the optimization models.  相似文献   

5.
In this paper, we examine duality for fractional programming problems in the face of data uncertainty within the framework of robust optimization. We establish strong duality between the robust counterpart of an uncertain convex–concave fractional program and the optimistic counterpart of its conventional Wolfe dual program with uncertain parameters. For linear fractional programming problems with constraint-wise interval uncertainty, we show that the dual of the robust counterpart is the optimistic counterpart in the sense that they are equivalent. Our results show that a worst-case solution of an uncertain fractional program (i.e., a solution of its robust counterpart) can be obtained by solving a single deterministic dual program. In the case of a linear fractional programming problem with interval uncertainty, such solutions can be found by solving a simple linear program.  相似文献   

6.
We discuss the strategic capacity planning and warehouse location problem in supply chains operating under uncertainty. In particular, we consider situations in which demand variability is the only source of uncertainty. We first propose a deterministic model for the problem when all relevant parameters are known with certainty, and discuss related tractability and computational issues. We then present a robust optimization model for the problem when the demand is uncertain, and demonstrate how robust solutions may be determined with an efficient decomposition algorithm using a special Lagrangian relaxation method in which the multipliers are constructed from dual variables of a linear program.  相似文献   

7.
Most research in robust optimization has been focused so far on inequality-only, convex conic programming with simple linear models for the uncertain parameters. Many practical optimization problems, however, are nonlinear and nonconvex. Even in linear programming, the coefficients may still be nonlinear functions of the uncertain parameters. In this paper, we propose robust formulations that extend the robust-optimization approach to a general nonlinear programming setting with parameter uncertainty involving both equality and inequality constraints. The proposed robust formulations are valid in a neighborhood of a given nominal parameter value and are robust to the first-order, thus suitable for applications where reasonable parameter estimations are available and uncertain variations are moderate. This work was supported in part by NSF Grant DMS-0405831  相似文献   

8.
Hybrid manufacturing/remanufacturing systems play a key role in implementing closed-loop production systems which have been considered due to increasingly environmental concerns and latent profit of used products. Manufacturing and remanufacturing rates, selling price of new products, and acquisition price of used products are the most critical variables to optimize in such hybrid systems. In this paper, we develop a dynamic production/pricing problem, in which decisions should be made in each period confronting with uncertain demand and return. The manufacturer is able to control the demand and return by adjusting selling price and acquisition price respectively, also she can stock inventories of used and new products to deal with uncertainties. Modeling a nominal profit maximization problem, we go through robust optimization approach to reformulate it for the uncertain case. Final robust optimization model is obtained as a quadratic programming model over discrete periods which can be solved by optimization packages of QP. A numerical example is defined and sensitivity analysis is performed on both basic parameters and parameters associated with uncertainty to create managerial views.  相似文献   

9.
《Applied Mathematical Modelling》2014,38(9-10):2630-2647
There are two broad categories of risk, which influence the supply chain design and management. The first category is concerned with uncertainty embedded in the model parameters, which affects the problem of balancing supply and demand. The second category of risks may arise from natural disasters, strikes and economic disruptions, terroristic acts, and etc. Most of the existing studies surveyed these types of risk, separately. This paper proposes a robust and reliable model for an integrated forward–reverse logistics network design, which simultaneously takes uncertain parameters and facility disruptions into account. The proposed model is formulated based on a recent robust optimization approach to protect the network against uncertainty. Furthermore, a mixed integer linear programing model with augmented p-robust constraints is proposed to control the reliability of the network among disruption scenarios. The objective function of the proposed model is minimizing the nominal cost, while reducing disruption risk using the p-robustness criterion. To study the behavior of the robustness and reliability of the concerned network, several numerical examples are considered. Finally, a comparative analysis is carried out to study the performance of the augmented p-robust criterion and other conventional robust criteria.  相似文献   

10.
Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that when the uncertainty is constraint-wise, the problem is convex with respect to the adjustable variables and concave with respect to the uncertain parameters, the adjustable variables lie in a convex and compact set and the uncertainty set is convex and compact, then robust solutions are also optimal for the corresponding ARO problem. Furthermore, we prove that if some of the uncertain parameters are constraint-wise and the rest are not, then under a similar set of assumptions there is an optimal decision rule for the ARO problem that does not depend on the constraint-wise uncertain parameters. Also, we show for a class of problems that using affine decision rules that depend on all of the uncertain parameters yields the same optimal objective value as when the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we illustrate the usefulness of these results by applying them to convex quadratic and conic quadratic problems.  相似文献   

11.
We consider the issue of choosing a subset of locations to construct new housing developments maximizing the satisfaction of potential buyers, which has not been previously studied in the literature. The allocation of demands to the selected locations is modeled by a choice model, based on the distance to the location, real-estate prices and incomes. We study two robust counterparts of the optimal location problem, where uncertainty lies on demand volumes for the first one, and on customer preferences for the second one. In both cases, the parameters subject to uncertainty appear both in the objective function and constraints. The second robust model combines a scenario-based approach with nominal, price-centric and distance-centric scenarios on customers preferences, and an uncertainty budget approach that limits the number of customers that can deviate from the nominal scenario. We show that the subproblem of finding the worst-case deviation of parameters subject to uncertainty is tractable and leads to linear formulations of the robust problem. Computational experiments conducted on instances of the Paris region show that the average loss of value of the robust solution is reasonably low when compared to the optimal solution of deviated instances. We also derive insights for the new housing development issue.  相似文献   

12.
大型突发事件发生后需要快速启动应急救灾网络,合理配置应急医疗服务站。本文考虑各应急医疗服务站选址节点需求的不确定性,引入三个不确定水平参数,构建四类不确定需求集合(box, ellipsoid, polyhedron和interval-polyhedron)对应的应急医疗服务站鲁棒配置模型,运用分支-切割算法求解,最后,进行需求扰动比例的灵敏度分析。算例结果表明,四类不确定需求集下的鲁棒配置模型中,ellipsoid不确定需求集合配置模型开放设施较少,总成本最小,鲁棒性较好。决策者还可以根据风险偏好选择不确定水平和需求扰动比例的组合,以使得总成本最小。  相似文献   

13.
孙月  邱若臻 《运筹与管理》2020,29(6):97-106
针对多产品联合库存决策问题,在市场需求不确定条件下,建立了考虑联合订货成本的多产品库存鲁棒优化模型。针对不确定市场需求,采用一系列未知概率的离散情景进行描述,给出了基于最小最大准则的鲁棒对应模型,并证明了(s,S)库存策略的最优性。进一步,在仅知多产品市场需求历史数据基础上,采用基于ø-散度的数据驱动方法构建了满足一定置信度要求的关于未知需求概率分布的不确定集。在此基础上,为获得(s,S)库存策略的相关参数,运用拉格朗日对偶方法将所建模型等价转化为易于求解的数学规划问题。最后,通过数值计算分析了Kullback-Leibler散度和Cressie-Read散度以及不同的置信水平下的多产品库存绩效,并将其与真实分布下应用鲁棒库存策略得到的库存绩效进行对比。结果表明,需求分布信息的缺失虽然会导致一定的库存绩效损失,但损失值很小,表明基于文中方法得到的库存策略能够有效抑制需求不确定性扰动,具有良好的鲁棒性。  相似文献   

14.
We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates better Value-at-Risk objective functions, especially for vectors with few non-zero components. An example of budget function is constructed from the probabilistic bounds computed by Bertsimas and Sim. We provide an asymptotically tight bound for the cost reduction obtained with the new model. We turn then to the tractability of the resulting optimization problems. We show that when the budget function is affine, the resulting optimization problems can be solved by solving n+1n+1 deterministic problems. We propose combinatorial algorithms to handle problems with more general budget functions. We also adapt existing dynamic programming algorithms to solve faster the robust counterparts of optimization problems, which can be applied both to the traditional budgeted uncertainty model and to our new model. We evaluate numerically the reduction in the price of robustness obtained with the new model on the shortest path problem and on a survivable network design problem.  相似文献   

15.
不同阶段需求不确定情况下,决策者的风险偏好和生产过程中的废品处理影响着供应链生产库存管理和供应链整体效益。本文考虑决策者风险偏好下,构建了包含I个生产者企业,一个库存点和一个废物处理基地的T阶段动态供应链生产库存框架,建立了椭球型需求不确定集下,以追求整体收益最大化为目标的不确定优化模型,并应用鲁棒优化理论得到了数据确定性线性鲁棒对应模型,讨论了模型解的可靠性和有效性。最后的算例表明,只有当决策者风险偏好参数在一定范围内时,才会存在满足条件且具有较高可靠性的鲁棒决策,验证了该鲁棒优化模型的合理性。  相似文献   

16.
《Optimization》2012,61(2):187-207
This article presents a robust optimization formulation for dealing with production cost uncertainty in an oligopolistic market scenario. It is not uncommon that players in the market face an equilibrium selling price but uncertain production costs. We show that, based on a nominal problem, the robust optimization formulation can be derived as a variational inequality with control and state variables. This convenient approach may be applied for computing optimal solutions efficiently, which help manufacturers dramatically and rapidly reform production and distribution schedules such that they can compete in the market successfully.  相似文献   

17.
In robust optimization, the general aim is to find a solution that performs well over a set of possible parameter outcomes, the so-called uncertainty set. In this paper, we assume that the uncertainty size is not fixed, and instead aim at finding a set of robust solutions that covers all possible uncertainty set outcomes. We refer to these problems as robust optimization with variable-sized uncertainty. We discuss how to construct smallest possible sets of min–max robust solutions and give bounds on their size.A special case of this perspective is to analyze for which uncertainty sets a nominal solution ceases to be a robust solution, which amounts to an inverse robust optimization problem. We consider this problem with a min–max regret objective and present mixed-integer linear programming formulations that can be applied to construct suitable uncertainty sets.Results on both variable-sized uncertainty and inverse problems are further supported with experimental data.  相似文献   

18.
Robust optimization (RO) is a distribution-free worst-case solution methodology designed for uncertain maximization problems via a max-min approach considering a bounded uncertainty set. It yields a feasible solution over this set with a guaranteed worst-case value. As opposed to a previous conception that RO is conservative based on optimal value analysis, we argue that in practice the uncertain parameters rarely take simultaneously the values of the worst-case scenario, and thus introduce a new performance measure based on simulated average values. To this end, we apply the adjustable RO (AARC) to a single new product multi-period production planning problem under an uncertain and bounded demand so as to maximize the total profit. The demand for the product is assumed to follow a typical life-cycle pattern, whose length is typically hard to anticipate. We suggest a novel approach to predict the production plan’s profitable cycle length, already at the outset of the planning horizon. The AARC is an offline method that is employed online and adjusted to past realizations of the demand by a linear decision rule (LDR). We compare it to an alternative offline method, aiming at maximum expected profit, applying the same LDR. Although the AARC maximizes the profit against a worst-case demand scenario, our empirical results show that the average performance of both methods is very similar. Further, AARC consistently guarantees a worst profit over the entire uncertainty set, and its model’s size is considerably smaller and thus exhibit superior performance.  相似文献   

19.
针对重大突发事件的应急物资救援,研究了应急物流中心的选址及应急物资的调运问题。利用离散的情景集合描述受灾点应急物资需求的不确定性以及应急物资运输成本和运输时间的不确定性,同时考虑应急救援成本和应急救援时间两个目标,建立了多目标应急物流中心选址的确定型模型和鲁棒优化模型。为将多目标问题转化为单目标问题,利用成本单目标和时间单目标的最优结果将多目标转化为相对值再加权处理,该方法既可消除多个目标之间的单位及数量级差异,还可以根据问题的数据变化进行动态调整。以提供应急物资救援服务的设施作为编码,设计了一种通用的混合蛙跳算法。为检验模型和算法的有效性,设计了一个多情景的算例,结果表明两个模型和算法具备良好的可行性和有效性,且鲁棒优化模型能较好地保持对各种不确定性的抗干扰能力;最后,讨论分析了成本偏好权重和鲁棒约束系数的影响,结果表明可根据成本偏好权重的取值范围来区分各种应急救援阶段,体现不同救援阶段的救援要求及特征,并给出了成本偏好权重和鲁棒约束系数的取值建议。  相似文献   

20.
考虑了具有强健性的信用风险优化问题. 根据最差条件在值风险度量信用风险的方法,建立了信用风险优化问题的模型. 由于信用风险的损失分布存在不确定性,考虑了两类不确定性区间,即箱子型区间和椭球型区间. 把具有强健性的信用风险优化问题分别转化成线性规划问题和二阶锥规划问题. 最后,通过一个信用风险问题的例子来说明此模型的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号