首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Zhang W  Xu H  Wu S  Chen X  Hu Z 《The Analyst》2001,126(4):513-517
For the first time, Crystal Violet (CV) was used to determine nucleic acid concentrations using the resonance light-scattering (RLS) technique. Based on the enhancement of the RLS of CV by nucleic acids, a new quantitative determination method for nucleic acids in aqueous solutions has been developed. At pH 5.03 and ionic strength 0.005 mol kg-1, the interaction of CV with nucleic acids results in three characteristic RLS peaks at 344.0, 483.0 and 666.0 nm. With 4.0 x 10(-5) mol l-1 of CV, linear relationships were found between the enhanced intensity of RLS at 666.0 nm and the concentration of nucleic acids in the range 0-2.5 micrograms ml-1 for herring sperm DNA, 0-4.0 micrograms ml-1 for calf thymus DNA and 0-4.5 micrograms ml-1 for yeast RNA. The limits of determination were 13.8 ng ml-1 for herring sperm DNA, 36.8 ng ml-1 for calf thymus DNA and 69.0 ng ml-1 for yeast RNA. The assay is convenient, rapid, inexpensive and simple.  相似文献   

2.
This is the first report on the determination of nucleic acids with Pyronine B (PB) sensitized by cetyltrimethylammonium bromide (CTMAB) with resonance light-scattering (RLS) technique. Under the experimental conditions (1 x 10(-5) mol l(-1) PB, 1 x 10(-5) mol l(-1) CTMAB, pH 7.4, at room temperature, ionic strength 0.02 mol l(-1) NaCl), the interaction of PB with DNA sensitized by CTMAB results in enhanced RLS signals at 328 and 377 nm in the enhanced regions. It was found that the enhanced RLS intensity at 328 nm was proportional to the concentration of DNA in the suitable ranges. The linear range of this assay is 0.0-1.2 microg ml(-1) for calf thymus, 0.0-0.8 microg ml(-1) for fish sperm DNA (fsDNA), and 0.04-1.4 microg ml(-1) for yeast RNA, respectively. The detection limits (3 sigma) are 6.1 ng ml(-1) for calf thymus DNA (ctDNA), 11.2 ng ml(-1) for fish sperm DNA, and 8.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined satisfactorily. This method is simple, rapid and the dye is inexpensive and stable.  相似文献   

3.
It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH 7.00, nucleic acids can quench the resonance light scattering (RLS) of europium (III) (Eu3+)-2-thenoyltrifluoroacetne (TTA)-1,10-phenanthroline (Phen) system. Based on this, a sensitive method for the determination of nucleic acids is proposed. The experiments indicate that under the optimum conditions, the quenched RLS intensity is in proportion to the concentration of nucleic acids in the range of 1.0x10(-10) to 2.0x10(-6) g ml-1 for fish sperm (fsDNA), 1.0x10(-11) to 1.0x10(-6) g ml-1 for yeast RNA (yRNA), 5.0x10(-11) to 5.0x10(-7) g ml-1 for calf thymus DNA (ctDNA). Their detection limits (S/N=3) are 0.03, 0.006 and 0.002 ng ml-1, respectively. Therefore, the proposed method is the most sensitive RLS method for the determination of nucleic acids so far. The interaction between nucleic acids and Eu3+-TTA-Phen is also discussed.  相似文献   

4.
A new assay of nucleic acids at nanogram level was established based on the enhanced resonance light scattering (RLS) signals of two zwitterionics cocamidopropyl hydroxysultaine (HSB) and lauryl betaine (BS-12). Under optimum conditions, the weak RLS signal of HSB is enhanced by nucleic acids, and the enhanced RLS intensity is proportional to the concentration of nucleic acids in the range of 0.02–7.3 mg l−1 for calf thymus DNA and 0.01–8.6 mg l−1 for fish sperm DNA. The detection limits were 1.5 ng ml−1 for calf thymus DNA and 1.9 ng ml−1 for fish sperm DNA. Plasmid DNA extracted from K-12-HB101 colt was determined with satisfactory results.  相似文献   

5.
Du X  Sasaki S  Nakamura H  Karube I 《Talanta》2001,55(1):93-98
The interaction of histone with nucleic acids was characterized by light-scattering measurement using a common spectrofluorometer. Thereby, a sensitive and convenient method for the determination of nucleic acids was established. At pH 4.5-6.5, the interaction of histone with nucleic acids resulted in considerable light-scattering , and four characteristic peaks at 298, 450, 503, and 551 nm were observed. The light-scattering was applied to the determination of nucleic acids. The experiments indicated that, under optimal conditions, a linear relationship was obtained between the light-scattering intensity (I(LS)) and the concentration of nucleic acids. The linear ranges were 0.02-2.0 mug ml(-1) for fish sperm DNA (fsDNA), 0.05-1.5 mug ml(-1) for calf thymus DNA (ctDNA), 0.05-2.5 mug ml(-1) for Herring testis DNA (HtDNA), and 0.05-1.5 mug ml(-1) for human placenta DNA (hpDNA). The detection limits were 2.0 ng for fish sperm DNA, 2.0 ng for calf thymus DNA, 5.0 ng for Herring testis DNA, and 3.0 ng for human placenta DNA. The nucleic acids in yeast cell extraction were determined by simple vortex extraction. The results were satisfactory, and the recovery rates were in the range of 88-108%.  相似文献   

6.
《Analytical letters》2012,45(12):2395-2415
ABSTRACT

The interactions of nile blue sulphate (NBS) with nucleic acids, including calf thymus DNA, fish sperm DNA and yeast RNA, were characterized with resonance light-scattering (RLS) measurements by using a common spectrofluorometer. Accordingly a method for the determination of nucleic acids at nanogram levels was established. At pH's of 7.20~7.60 and ionic strengths lower than 0.012, the interactions of NBS with nucleic acids result in three characteristic RLS peaks at 293.4 nm, 349.4 nm and 560.4 nm. Mechanism study shows that these peaks are ascribed to the long range assembly of NBS on the molecular surface of nucleic acids, which depends on pH, ionic strength and the stranded structure of nucleic acids. A Scatchard plot was constructed by using the RLS data, yielding the assembly number and assembly constant being 6.4 and 7.13x106 mol?1 1 for NBS assembly on the molecular surface of calf thymus DNA. The same parameters are 6.6 and 4.58x106 mol?1 1 for the assembly on that of fish sperm DNA, 3.9 and 1.67x106 mol?1 1 on that of yeast RNA, respectively. Linear relationships were found between the enhanced RLS intensity at 293.4 nm and nucleic acid concentration. If 1.2x10?5 mol I?1 NBS was employed, 0~0.80 μg ml?1 calf thymus DNA and fish sperm DNA, 0.20~0.60 μg ml?1 yeast RNA can be determined with the determination limits being 3.2 ng ml?1 for calf thymus DNA, 11.5 ng ml?1 for fish sperm DNA and 38.3 ng ml?1 for yeast RNA, respectively. Four synthetic samples were determined with satisfaction.  相似文献   

7.
A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL-1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL-1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL-1, 3.4 ng mL-1 and 2.9 ng mL-1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.  相似文献   

8.
The nano-Ag-terbium(III)-mucleic acids system was observed by a resonance light scattering (RLS) technique for the first time, and the quantitative analysis of nucleic acids at nanogram levels was established. Studies showed that the RLS intensity of the nano-Ag-terbium(III) system can be obviously enhanced by nucleic acid, which was characterized by the RLS spectrum and the UV-Vis spectrum. In this system, the nanoparticles were only of a definite size and in a limited particle concentration region. Further research indicated that under the optimum conditions, the enhanced intensity of RLS is in proportion to the concentration of nucleic acids in the ranges of 7.0 x 10(-9) g ml(-1) to 8.0 x 10(-6) g ml(-1) for calf thymus DNA (ctDNA), 2.0 x 10(-8) g ml(-1) to 1.0 x 10(-6) g ml(-1) for fish sperm DNA (fsDNA) and 1.0 x 10(-9) g ml(-1) to 1.0 x 10(-7) g ml(-1) for yeast RNA (yRNA). The detection limits were 1.4 ng ml(-1) for ctDNA, 1.2 ng ml(-1) for fsDNA and 0.85 ng ml(-1) for yRNA, respectively. Synthetic and real samples were determined satisfactorily.  相似文献   

9.
Huang CZ  Li YF  Huang XH  Li M 《The Analyst》2000,125(7):1267-1272
A novel assay of DNA with a sensitivity at the nanogram level is proposed based on the measurement of enhanced resonance light scattering (RLS) signals resulting from the interaction of Janus Green B (JGB) with DNA. At pH 6.37 and ionic strength < 0.20, the RLS signals of JGB were greatly enhanced by DNA in the region of 300-650 nm characterized by three peaks at 416.0, 452.0 and 469.2 nm. The binding properties were examined using a Scatchard plot based on the measurement of the enhanced RLS data at 416.0 nm at a high JGB: DNA molar ratio (R > 2.22), and an aggregation mechanism of JGB in the presence of DNA at the nanogram level is proposed. Linear relationships can be established between the enhanced RLS intensity and DNA concentration in the range 0-3.5 micrograms ml-1 for both calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) if 2.0 x 10(-5) M JGB is employed. The limits of determination were 8.7 ng ml-1 for ctDNA and 9.9 ng ml-1 for fsDNA, respectively. Synthetic samples were analysed satisfactorily.  相似文献   

10.
The interaction of brilliant cresol blue (BCB) with nucleic acids in aqueous solution has been studied by spectrophotometry and Rayleigh light scattering (RLS) spectroscopy. Under suitable conditions, the RLS spectra of BCB changed significantly due to the presence of nucleic acids. RLS intensity of BCB at 364 nm is greatly enhanced with the addition of nucleic acids, and a new RLS peak is observed at 552 nm. This peak is about half the intensity of that at 364 nm. The results of this study show that BCB interacts with DNA possibly due to the cooperative effect of electrostatic attraction, intercalation, coordination and hydrophobic effect. Under optimum conditions, the increase of RLS at 364 nm of a BCB solution is proportional to the concentration of nucleic acids added. This result is the basis for a new RLS method for determination of nucleic acids. The linear range of ctDNA, fsDNA and yRNA is 0.12-4.70, 0.11-4.64 and 0.43-7.07 microg ml(-1), respectively.  相似文献   

11.
On the basis of enhancement of resonance light scattering (RLS) of copper phthalocyanine tetrasulfonic acid (CuTSPc) by nucleic acids and cetyltrimethylammonium bromide (CTMAB) under suitable conditions, a new RLS method for determination of nucleic acids in aqueous solutions has been developed. At pH 9.80–10.95 and ionic strength 0.01 mol L–1 (NaCl), the interaction of copper phthalocyanine tetrasulfonic acid with nucleic acids in the presence of cetyltrimethylammonium bromide results in enhanced RLS signals at 282.0 nm, 383.6 nm, and 616.2 nm in the enhanced regions. It was found that the enhanced RLS intensity at 383.6 nm was proportional to the concentration of nucleic acids within suitable ranges. The limits of detection were 10.6 ng mL–1 for fish sperm DNA and 32.4 ng mL–1 for calf thymus DNA when the concentration of copper phthalocyanine tetrasulfonic acid was 2.0×10–6 mol L–1. This method is rapid, simple and sensitive. In addition, the reagents used are relatively inexpensive, stable, and easily synthesised. The method can be applied to the determination of nucleic acids in the presence of coexisting substances, and we have applied it to the determination of DNA in synthetic samples, with satisfactory results.  相似文献   

12.
A new simple, selective and sensitive fluorescence quenching method was developed to determine nucleic acids (DNA) with the 9-anthracenecarboxylic acid (ACA)-cetyl trimethyl-ammonium bromide (CTAB) system. The fluorescence intensity of ACA was decreased by the addition (CTAB). However, the fluorescence intensity of the system increased dramatically when DNA was added to the solution. The fluorescence enhancement is probably based on the DNA interaction with CTAB. Under the optimum conditions, the changes of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of nucleic acids over the range 0.08-1.0 microg mL(-1) for CT (calf thymus) DNA or FS (fish sperm) DNA. Its detection limits are 0.02 microg mL(-1) for CT DNA and 0.019 microg mL(-1) for FS DNA. Based on this approach, a new quantitative method for DNA assay is presented in this paper.  相似文献   

13.
The interaction of xylenol orange (XO) and nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by a resonance light-scattering (RLS) technique with a common spectrofluorometer. In hexamethylenetetramine (HMTA) buffer (pH7.30), XO and nucleic acids react with cetyltrimethylammonium bromide to form large particles of three-component complex, which results in strong enhanced RLS signals characterized by three peaks at 295.9, 335.5 and 542 nm, Mechanistic studies showed that the enhanced RLS stems from the aggregation of XO on DNA through the bridged and synergistic effect of CTMAB. With the enhanced RLS signals at the three wavelengths, the enhanced RLS intensity is proportional to the concentration of nucleic acids in an appropriate range. The lowest limit of determination was 5.31 ng ml(-1), three synthetic samples of yDNA were analyzed satisfactorily.  相似文献   

14.
Lu W  Huang CZ  Li YF 《The Analyst》2002,127(10):1392-1396
A total internal reflected resonance light scattering (TIR-RLS) technique, the coupling of resonance light scattering (RLS) technique with total internal reflected light at the interface of two immiscible liquids, where the steep change of the refractive indexes occurs to result in an evanescent field, is proposed with the characteristics of separation and enrichment properties of analytes and direct use of oil-soluble reagents free from surfactants. At pH 8.69 and ion strength 0.008, ternary amphiphilic species formed by the interaction of nucleic acids, including calf thymus DNA (ctDNA), fish sperm DNA (fsDNA), and yeast RNA (yRNA), with Eu(III) in the presence of oil-soluble trioctylphosphine oxide (TOPO), are adsorbed to the water/tetrachloromethane (H20/CCl4) interface, giving rise to significantly enhanced TIR-RLS signals. It has been found that the enhanced TIR-RLS intensity at 348.0 nm is proportional to the concentration of thermally denatured ctDNA, fsDNA and yRNA in the range 0.002-2.5 microg ml(-1), 0.002-2.5 microg ml(-1) and 0.003-2.0 microg ml(-1), respectively and their limits of determination (3sigma) are 0.16 ng ml(-1), 0.19 ng ml(-1) and 0.28 ng ml(-1), correspondingly. Complicated artificial samples with highly interfering backgrounds were determined satisfactorily.  相似文献   

15.
Cysteine-capped ZnS nanometer-sized fluorescent particles were produced by a colloidal aqueous synthesis. The functionalized nanoparticles are water-soluble and suitable for biological application. A synchronous fluorescence method has been developed for the rapid determination of DNA with functionalized nano-ZnS as a fluorescence probe, based on the synchronous fluorescence enhancement of cysteine-capped nano-ZnS in the presence of DNA. When Deltalambda =190 nm, maximum synchronous fluorescence is produced at 267 nm at pH 5.12. Under optimum conditions, the synchronous fluorescence intensity is proportional to the concentration of nucleic acids in the range 0.1-1.2 microg ml(-1) for calf thymus DNA, 0.1-0.6 microg ml(-1) for fish sperm DNA. The corresponding detection limit is 32.9 ng ml(-1) for calf thymus DNA and 24.6 ng ml(-1) for fish sperm DNA. This method is simple, inexpensive, rapid and sensitive. The recovery and relative standard deviation are satisfactory.  相似文献   

16.
For the first time, acetamiprid has been used to determine nucleic acid (DNA) using the resonance light scattering (RLS). The RLS of acetamiprid was greatly enhanced by DNA in the range of pH 1.6-1.8. A RLS peak at 313 nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0-11.0 microg ml(-1) with the detection limit of 20 ng ml(-1). The nucleic acids in synthetic sample and in rice seedling extraction were determined satisfactorily. The interaction mechanism of acetamiprid and DNA is discussed. Mechanism studies show that the enhanced RLS is due to the aggregation of acetamiprid in the presence of DNA.  相似文献   

17.
Li Z  Li K  Tong S 《Talanta》2000,51(1):63-70
The large particle light scattering technique was first developed as a sensitive and convenient analysis method for microdetermination of nucleic acids by using a common spectrofluorometer. In 0.1 mol l(-1) HCl, H(2)SO(4), or HNO(3) solution, the nucleic acids can aggregate to form large particles whose dimensions are comparable to the wavelength of UV-Vis light. The large particles can result in very strong light scattering which is well proportional to the concentration of nucleic acids in the range of 0.06-100.0 mug ml(-1) for calf thymus DNA, 0.05-60.0 mug ml(-1) for fish sperm DNA, and 0.6-90.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 18.0 ng ml(-1) for calf thymus DNA, 16.0 ng ml(-1) for fish sperm DNA, and 57.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined with satisfactory results.  相似文献   

18.
The interaction of berberine with nucleic acid in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by spectrophotometry and resonance light scattering (RLS) spectroscopy. At pH 7.30, the RLS signals of berberine were greatly enhanced by nucleic acid in the region of 300-600 nm characterized by four peaks at 324.0, 386.5, 416.5 and 465.0 nm. The binding properties were examined by using a Scatchard plot based on the measurement of enhanced RLS data at 416.5 nm. Under optimum conditions, the increase of RLS intensity of this system at 416.5 nm is proportional to the concentration of nucleic acid. The linear range is 7.5 x 10(-9)-7.5 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-2.5 x 10(-5) g ml(-1) for herring sperm DNA, and 5.0 x 10(-9)-2.5 x 10(-5) g ml(-1) for yeast RNA. The detection limits (S/N = 3) are 2.1 ng ml(-1) for calf thymus DNA, 6.5 ng ml(-1) for herring sperm DNA and 3.5 ng ml(-1) for yeast RNA, respectively. Three synthetic samples were analyzed satisfactorily.  相似文献   

19.
An assay of deoxyribonucleic acids (DNA) determination, with the sensitivity at nanogram level, was established in the present study by using a common spectrofluorometer to detect the intensity of resonance light scattering (RLS). In hexamethylene tetramine (HMTA) buffer (pH 11.00), Bromocresol Green (BCG) and deoxyribonucleic acids (DNA) react with cetyltrimethylammonium bromide (CTMAB) to form large particles of three-component complex, which results in strong enhanced RLS signals characterized by three peaks at 336, 390, and 622 nm and at 336 nm that is the strongest of the three enhanced RLS peaks. Mechanistic studies showed that the enhanced RLS stems from the aggregation of BCG on DNA through the bridged and synergistic effect of CTMAB. Yeast DNA (yDNA), in the range of 0.05-0.90 ngml(-1), fish sperm DNA (fsDNA) in the range of 0.05-0.80 ngml(-1), and calf thymus DNA (ctDNA) in the range of 0.05-0.80 ngml(-1) can be determined if 2.0 x 10(-6) moll(-1) BCG was employed. The determination limit of yDNA was 12.7 ngml(-1). Three synthetic samples of yDNA were analyzed with good reproducibility.  相似文献   

20.
Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0 x 10(-9) to 1.0 x 10(-6) g ml(-1), 7.5 x 10(-8) to 1.0 x 10(-6) g ml(-1) and 7.5 x 10(-8) to 2.5 x 10(-6) g ml(-1) for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml(-1) (S/N = 3), respectively. Actual biological samples were satisfactorily determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号