首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of berberine with nucleic acid in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by spectrophotometry and resonance light scattering (RLS) spectroscopy. At pH 7.30, the RLS signals of berberine were greatly enhanced by nucleic acid in the region of 300-600 nm characterized by four peaks at 324.0, 386.5, 416.5 and 465.0 nm. The binding properties were examined by using a Scatchard plot based on the measurement of enhanced RLS data at 416.5 nm. Under optimum conditions, the increase of RLS intensity of this system at 416.5 nm is proportional to the concentration of nucleic acid. The linear range is 7.5 x 10(-9)-7.5 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-2.5 x 10(-5) g ml(-1) for herring sperm DNA, and 5.0 x 10(-9)-2.5 x 10(-5) g ml(-1) for yeast RNA. The detection limits (S/N = 3) are 2.1 ng ml(-1) for calf thymus DNA, 6.5 ng ml(-1) for herring sperm DNA and 3.5 ng ml(-1) for yeast RNA, respectively. Three synthetic samples were analyzed satisfactorily.  相似文献   

2.
The nano-Ag-terbium(III)-mucleic acids system was observed by a resonance light scattering (RLS) technique for the first time, and the quantitative analysis of nucleic acids at nanogram levels was established. Studies showed that the RLS intensity of the nano-Ag-terbium(III) system can be obviously enhanced by nucleic acid, which was characterized by the RLS spectrum and the UV-Vis spectrum. In this system, the nanoparticles were only of a definite size and in a limited particle concentration region. Further research indicated that under the optimum conditions, the enhanced intensity of RLS is in proportion to the concentration of nucleic acids in the ranges of 7.0 x 10(-9) g ml(-1) to 8.0 x 10(-6) g ml(-1) for calf thymus DNA (ctDNA), 2.0 x 10(-8) g ml(-1) to 1.0 x 10(-6) g ml(-1) for fish sperm DNA (fsDNA) and 1.0 x 10(-9) g ml(-1) to 1.0 x 10(-7) g ml(-1) for yeast RNA (yRNA). The detection limits were 1.4 ng ml(-1) for ctDNA, 1.2 ng ml(-1) for fsDNA and 0.85 ng ml(-1) for yRNA, respectively. Synthetic and real samples were determined satisfactorily.  相似文献   

3.
Liu R  Yang J  Wu X  Sun C  Wu T 《The Analyst》2001,126(8):1367-1371
A new preresonance light scattering (PRLS) assay of nucleic acids is presented. At pH 7.30, the weak PRLS of morin-cetyltrimethylammonium bromide (CTMAB) can be greatly enhanced by the addition of nucleic acids, owing to the interaction between the nucleic acid and morin-CTMAB. After the addition of morin and CTMAB to DNA, the zeta potential of DNA decreases and changes from negative to positive, which is due to the formation of an associate, the aggregation of morin on nucleic acids and the electric neutralization between DNA and the cationic surfactant CTMAB. Mechanism studies showed that the enhanced PRLS comes from the aggregation of morin in the presence of nucleic acids and CTMAB. The enhanced intensity of PRLS is in proportion to the concentration of nucleic acids in the range 7.5 x 10(-9)-1.0 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-1.0 x 10(-6) g ml(-1) for salmon sperm DNA and 1.0 x 10(-8)-1.0 x 10(-6) g ml(-1) for yeast RNA. The detection limits are 3.4, 6.2 and 4.1 ng ml(-1) for calf thymus DNA, salmon sperm DNA and yeast RNA, respectively. Synthetic samples were analyzed satisfactorily.  相似文献   

4.
It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH 7.00, nucleic acids can quench the resonance light scattering (RLS) of europium (III) (Eu3+)-2-thenoyltrifluoroacetne (TTA)-1,10-phenanthroline (Phen) system. Based on this, a sensitive method for the determination of nucleic acids is proposed. The experiments indicate that under the optimum conditions, the quenched RLS intensity is in proportion to the concentration of nucleic acids in the range of 1.0x10(-10) to 2.0x10(-6) g ml-1 for fish sperm (fsDNA), 1.0x10(-11) to 1.0x10(-6) g ml-1 for yeast RNA (yRNA), 5.0x10(-11) to 5.0x10(-7) g ml-1 for calf thymus DNA (ctDNA). Their detection limits (S/N=3) are 0.03, 0.006 and 0.002 ng ml-1, respectively. Therefore, the proposed method is the most sensitive RLS method for the determination of nucleic acids so far. The interaction between nucleic acids and Eu3+-TTA-Phen is also discussed.  相似文献   

5.
At pH 9.75, the resonance light scattering (RLS) intensity of OA–Eu3+ system is greatly enhanced by nucleic acid. Based on this phenomenon, a new quantitative method for nucleic acid in aqueous solution has been developed. Under the optimum condition, the enhanced RLS is proportional to the concentration of nucleic acid in the range of 1.0 × 10−9 to 1.0 × 10−6 g/ml for herring sperm DNA, 8.0 × 10−10 to 1.0 × 10−6 g/ml for calf thymus DNA and 1.0 × 10−9 to 1.0 × 10−6 g/ml for yeast RNA, and their detection limits are 0.020, 0.011 and 0.010 ng/ml, respectively. Synthetic samples and actual samples were satisfactorily determined. In addition, the interaction mechanism between nucleic acid and OA–Eu3+ is also investigated.  相似文献   

6.
It is found that nucleic acids can enhance the fluorescence intensity of yttrium(III) (Y(3+))-rutin in presence of cetyltrimethylammonium bromide (CTMAB) system. In hexamethylenetetramine (HMTA)-HCl buffer, the maximum enhanced fluorescence is produced, with maximum excitation and emission wavelengths at 452 and 520 nm, respectively. Based on this, a new fluorimetric method of determination of nucleic acids is proposed. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 1.0 x 10(-7) to 1.0 x 10(-5)g/ml for fish sperm DNA (fsDNA), 1.0 x 10(-7) to 4.6 x 10(-6)g/ml for yeast RNA (yRNA), their detection limits (S/N=3) are 7.5 x 10(-8), 8.0 x 10(-8)g/ml, respectively. The interaction mechanism is also studied.  相似文献   

7.
Resonance Rayleigh light scattering (RRLS) spectra of cetylpyridine bromide (CPB)-nucleic acid system and their analytical application have been first studied. The effective factors and optimum conditions of the reaction have been investigated. After CPB and nucleic acid are mixed together, a new absorption peak located at 300 nm appeared, which is due to the formation of new ion associate of CPB-nucleic acid. The new associate can result in two apparent RRLS peaks at 310-400 and 460-480 nm. The RRLS peak of the corrected spectra located at 290-350 nm, which indicate that the RRLS is originated from the absorption of CPB-nucleic acid associate. The peak at 460-480 nm disappears in the corrected RRLS spectra, which indicated that this peak is originated from the strong line emission of the Xe lamp. Under the optimum conditions, the enhanced intensity of RRLS is proportional to the concentration of nucleic acid in the range of 5.0 x 10(-9)-5.0 x 10(-5) g ml(-1) for calf thymus DNA (ctDNA), 1.0 x 10(-8)-4.0 x 10(-5) g ml(-1) for fish sperm DNA (fsDNA) and 1.0 x 10(-8)-5.0 x 10(-5) g ml(-1) for yeast RNA (yRNA). The detection limits (S/N = 3) are 4.3, 8.7 and 7.4 ng ml(-1), respectively. Synthetic samples were determined satisfactorily.  相似文献   

8.
For the first time, acetamiprid has been used to determine nucleic acid (DNA) using the resonance light scattering (RLS). The RLS of acetamiprid was greatly enhanced by DNA in the range of pH 1.6-1.8. A RLS peak at 313 nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0-11.0 microg ml(-1) with the detection limit of 20 ng ml(-1). The nucleic acids in synthetic sample and in rice seedling extraction were determined satisfactorily. The interaction mechanism of acetamiprid and DNA is discussed. Mechanism studies show that the enhanced RLS is due to the aggregation of acetamiprid in the presence of DNA.  相似文献   

9.
Zheng J  Wu X  Wang M  Ran D  Xu W  Yang J 《Talanta》2008,74(4):526-532
A novel method is proposed in this paper, that is the silver nanoparticle (nanoAg)-cetyltrimethylammonium bromide (CTMAB) is used as the probe of resonance light scattering (RLS) for the determination of nucleic acids. Under optimum conditions, there are linear relationships between the quenching extent of RLS and the concentration of nucleic acids in the range of 4.0x10(-9)-2.0x10(-6)gmL(-1) for fish sperm DNA (fsDNA), 7.0x10(-9)-1.8x10(-6)gmL(-1) for calf thymus DNA (ctDNA) and 6.0x10(-9)-1.0x10(-6)gmL(-1) for yeast RNA (yRNA). The detection limits (S/N=3) of fsDNA, ctDNA and yRNA are 2.7x10(-10)gmL(-1), 4.8x10(-10)gmL(-1) and 7.2x10(-10)gmL(-1), respectively. The studies indicate that there are interactions among nanoAg, CTMAB and fsDNA through electrostatic and chemical affinity, and the nanoAg-CTMAB complex can induce the structural change of base stacking and helicity of fsDNA.  相似文献   

10.
A new resonance light scattering (RLS) assay of protein is presented. In Tris-NaOH (pH = 10.93) buffer, the RLS of rutin-cetylpyridine bromide (CPB) system can be greatly enhanced by protein, including bovine serum albumin (BSA) and human serum albumin (HSA). The enhanced RLS intensities are in proportion to the concentration of proteins in the range of 5 x 10(-9) to 2.5 x 10(-6) g ml(-1) for BSA and 2.5 x 10(-8) to 3.5 x 10(-6) g ml(-1) for HSA. The detection limits (S/N = 3) are 3.0 ng ml(-1) for BSA and 10.0 ng ml(-1) for HSA. Samples are determined satisfactorily.  相似文献   

11.
核酸对氯化银胶体溶液共振光散射的猝灭作用及其应用   总被引:7,自引:0,他引:7  
朱昌青  李东辉  郑洪  朱庆枝  许金钩 《分析化学》2000,28(12):1485-1488
报道了一种测定水溶液中核酸的方法,该法基于核酸对氯化银溶胶共振射光的猝灭作用。在理想测定条件下,散射光的猝灭程度正比于核酸的浓度,三种核酸(calf thymus DNA,herring DNA and YeastRNA)的线性范围分别为0-20μg/L,0-60μg/L和0-80μg/L,检测限分别为0.65μg/L,1.1μg/L和1.9μg/L。6种合成样品的测定结果令人满意,机理研究结果表明,核酸中的碱基(尤其是嘌呤碱)同银离子具有很强的结合能力,这种结合影响了氯化银的沉淀平衡,导致了氯化银溶胶共振散射光的猝灭。  相似文献   

12.
Interactions of the anti-inflammatory drug ketoprofen with calf thymus DNA (ctDNA) in aqueous solution have been studied by multi-spectroscopic method including resonance light scattering (RLS) technique, ultraviolet spectra (UV), (1)H NMR, etc. The characteristics of RLS spectra, the effective factors and optimum conditions of the reaction have been unequivocally investigated. Mechanism investigations have shown that ketoprofen can bind to ctDNA by groove binding and form large particles, which resulted in the enhancement of RLS intensity. In Critic acid-Na(2)HPO(4) buffer (pH=6.5), ketoprofen has a maximum peak 451.5 nm and the RLS intensity is remarkably enhanced by trace amount of ctDNA due to the interaction between ketoprofen and ctDNA. The enhancement of RLS signal is directly proportional to the concentration of ctDNA in the range of 1.20×10(-6)-1.0×10(-5) mol/L, and its detection limit (3σ) is 1.33×10(-9) mol/L. The method is simple, rapid, practical and relatively free from interference generated by coexisting substance, and was applied to the determination of trace amounts of nucleic acid in synthetic samples with satisfactory results.  相似文献   

13.
Manganese chloride can form large particles with nucleic acids by electrostatic forces, which results in strong enhancement of resonance light scattering (RLS) signals. Based on this phenomenon, a novel and very simple assay of DNA was established. The work conditions have been investigated including the concentration of probe, the acidity of solution, the effect of ionic strength and the selectivity. In acidic solution, the enhanced RLS intensity at 389.5 nm was proportional to the concentration of nucleic acids in the range 0.05-10.0 microg ml(-1) for both ctDNA and fsDNA and 1.0-10.0 microg ml(-1) for yRNA. The limits of detection (LOD, 3sigma) were 0.17, 0.13 and 0.53 ng ml(-1) for ctDNA, fsDNA and yRNA, respectively. Synthetic samples were determined satisfactorily.  相似文献   

14.
Using a common spectrofluorometer to measure the intensity of Rayleigh light-scattering (RLS), a method for determination of nucleic acids has been developed. At pH 10.24 and ionic strength 0.01 mol l-1 (NaCl), the Rayleigh light-scattering of the tetra-(N-hexadecylpyridiniumyl) porphyrin (TC16PyP) is greatly enhanced by nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB), with the scattering peak located at 311.8 nm. The enhanced RLS intensity is in proportion to the concentration of calf thymus DNA (ctDNA) in the range 0.2-6.0 microg ml-1 and to that of fish sperm DNA (fsDNA) in the range 0.05-3.0microg ml-1. The limits of detection are 0.016 microg ml-1 for calf thymus DNA and 0.023 microg ml-1 for fish sperm DNA when the concentration of TPP was chosen 2.0 x 10(-6) mol l-1. Four synthetic samples were determined satisfactorily.  相似文献   

15.
For the first time, poly(ethylenimine) (PEI) was used to determine nucleic acids with a light scattering technique using a common spectrofluorometer. The interaction of PEI with DNA results in greatly enhanced intensity of light scattering at 300 nm, which is caused by the formation of the big particles between DNA and PEI. Based on this, a new quantitative method for nucleic acid determination in aqueous solutions has been developed. Under the optimum conditions, the enhanced intensity of light scattering is proportional to the concentration of nucleic acid in the range of 0.01-10.0 microg ml(-1) for herring sperm DNA (hsDNA), 0.02-10.0 microg ml(-1) for calf thymus DNA (ctDNA), 0.02-20.0 microg ml(-1) for yeast RNA (yRNA). The detection limits are 5.3, 9.9, and 13.7 ng ml(-1), respectively. Synthetic samples were determined satisfactorily. At the same time, the light scattering technique has been successfully used to obtain the information on the effects of pH and ionic strength on the formation and the stability of the DNA/PEI complex, which is important in some fields such as genetic engineering and gene transfer. Using ethidium bromide (EB) as a fluorescent probe, the binding of PEI with hsDNA was studied. Both the binding constant of EB with DNA and the number of binding sites per nucleotide decrease with increasing concentration of PEI, indicating noncompetitive inhibition of EB binding to DNA in the presence of PEI. And the association constant of PEI to DNA obtained is 1.2 x 10(5) M(-1). IR-spectra show that PEI interacts with DNA through both the phosphate groups and the bases of DNA and the formation of DNA/PEI complex may cause the change of the conformation of the DNA secondary structure, which is also proved by UV-spectra.  相似文献   

16.
This is the first report on the determination of nucleic acids with Pyronine B (PB) sensitized by cetyltrimethylammonium bromide (CTMAB) with resonance light-scattering (RLS) technique. Under the experimental conditions (1 x 10(-5) mol l(-1) PB, 1 x 10(-5) mol l(-1) CTMAB, pH 7.4, at room temperature, ionic strength 0.02 mol l(-1) NaCl), the interaction of PB with DNA sensitized by CTMAB results in enhanced RLS signals at 328 and 377 nm in the enhanced regions. It was found that the enhanced RLS intensity at 328 nm was proportional to the concentration of DNA in the suitable ranges. The linear range of this assay is 0.0-1.2 microg ml(-1) for calf thymus, 0.0-0.8 microg ml(-1) for fish sperm DNA (fsDNA), and 0.04-1.4 microg ml(-1) for yeast RNA, respectively. The detection limits (3 sigma) are 6.1 ng ml(-1) for calf thymus DNA (ctDNA), 11.2 ng ml(-1) for fish sperm DNA, and 8.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined satisfactorily. This method is simple, rapid and the dye is inexpensive and stable.  相似文献   

17.
The interaction of brilliant cresol blue (BCB) with nucleic acids in aqueous solution has been studied by spectrophotometry and Rayleigh light scattering (RLS) spectroscopy. Under suitable conditions, the RLS spectra of BCB changed significantly due to the presence of nucleic acids. RLS intensity of BCB at 364 nm is greatly enhanced with the addition of nucleic acids, and a new RLS peak is observed at 552 nm. This peak is about half the intensity of that at 364 nm. The results of this study show that BCB interacts with DNA possibly due to the cooperative effect of electrostatic attraction, intercalation, coordination and hydrophobic effect. Under optimum conditions, the increase of RLS at 364 nm of a BCB solution is proportional to the concentration of nucleic acids added. This result is the basis for a new RLS method for determination of nucleic acids. The linear range of ctDNA, fsDNA and yRNA is 0.12-4.70, 0.11-4.64 and 0.43-7.07 microg ml(-1), respectively.  相似文献   

18.
Zhao L  Wu X  Ding H  Yang J 《The Analyst》2008,133(7):896-902
It is found that L-cysteine-capped nano-ZnS can further enhance the fluorescence intensity of the morin-nucleic acid system. Under optimum conditions, the enhanced intensity of fluorescence is proportional to the concentration of nucleic acid in the range of 7.0 x 10(-8)-1.0 x 10(-5) g mL(-1) for fish sperm DNA (fsDNA) and 9.0 x 10(-8)-5.0 x 10(-6) g mL(-1) for yeast RNA (yRNA). The corresponding detection limits (S/N = 3) are 2.0 x 10(-8) g mL(-1) and 4.0 x 10(-8) g mL(-1), respectively. The interaction mechanisms of morin-nucleic acid-L-cysteine-capped nano-ZnS system are studied by multiple techniques. It is considered that there exists synergistic effects of groove binding and electrostatic interaction between morin, L-cysteine-capped nano-ZnS and nucleic acid, and the complex of morin-L-cysteine-capped nano-ZnS-nucleic acid is formed.  相似文献   

19.
A novel method for the determination of nucleic acids by using silver nanoparticle (AgNPs)-eriochrome black T (EBT) as a resonance light scattering (RLS) probe has been developed. Under optimum conditions, there are linear relationships between the quenching extent of RLS intensity and the concentration of nucleic acids in the range of 4.0×10(-9)-4.0×10(-7), 4.0×10(-7)-1.6×10(-6) g mL(-1) for fish sperm DNA (fsDNA) and 4.0×10(-8)-2.0×10(-6) g mL(-1) for yeast RNA (yRNA). Their detection limits (S/N=3) are 2.0 ng mL(-1) and 21 ng mL(-1), respectively. The results indicate that AgNPs can form wirelike aggregates and nanoslices in the presence of the EBT. Whereas, when nucleic acids are added into the AgNPs-EBT system, the dynamic balance of AgNPs-EBT system is destroyed and the nanoparticles undergo dispersion again, leading to the RLS intensity of AgNPs-EBT system quenching. Meanwhile, the conformation of fsDNA is changed by the synergistic effect of AgNPs and EBT.  相似文献   

20.
On the basis of enhancement of resonance light scattering (RLS) of copper phthalocyanine tetrasulfonic acid (CuTSPc) by nucleic acids and cetyltrimethylammonium bromide (CTMAB) under suitable conditions, a new RLS method for determination of nucleic acids in aqueous solutions has been developed. At pH 9.80–10.95 and ionic strength 0.01 mol L–1 (NaCl), the interaction of copper phthalocyanine tetrasulfonic acid with nucleic acids in the presence of cetyltrimethylammonium bromide results in enhanced RLS signals at 282.0 nm, 383.6 nm, and 616.2 nm in the enhanced regions. It was found that the enhanced RLS intensity at 383.6 nm was proportional to the concentration of nucleic acids within suitable ranges. The limits of detection were 10.6 ng mL–1 for fish sperm DNA and 32.4 ng mL–1 for calf thymus DNA when the concentration of copper phthalocyanine tetrasulfonic acid was 2.0×10–6 mol L–1. This method is rapid, simple and sensitive. In addition, the reagents used are relatively inexpensive, stable, and easily synthesised. The method can be applied to the determination of nucleic acids in the presence of coexisting substances, and we have applied it to the determination of DNA in synthetic samples, with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号