首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sample pretreatment is key to obtaining good data in matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix‐enhanced surface‐assisted laser desorption/ionization (ME‐SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α‐cyano‐4‐hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME‐SALDI‐MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME‐Zr‐SALDI‐MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI‐MSI.  相似文献   

2.
Matrix‐assisted laser desorption/ionisation mass spectrometry imaging (MALDI‐MSI) has proven to be a powerful analytical tool to investigate problems in several fields of life science. A novel application is in the field of forensics, particularly in the analysis of latent fingermarks. This technology enables images of the fingermark ridge detail and additional intelligence to be simultaneously obtained. Although several methods are available to deposit the MALDI matrix, to make the technology forensically operational, another deposition approach was devised and reported, namely the ‘dry–wet’ method. In the present study, the efficiency of the dry–wet method was evaluated and compared with the conventional spray coat methodology. Results indicate that the dry–wet method is superior for all the donors' typologies in terms of ion signal intensity and clarity of the ridge details. To underpin the reasons of this efficiency, scanning electron microscopy analyses were carried out in parallel to MALDI‐MSI experiments using matrices of different particle size. Results have confirmed that the particle size plays an important role in the efficiency of the method as higher quality images and higher intensity spectra are produced as the matrix particle size decreases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Matrix application continues to be a critical step in sample preparation for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Imaging of small molecules such as drugs and metabolites is particularly problematic because the commonly used washing steps to remove salts are usually omitted as they may also remove the analyte, and analyte spreading is more likely with conventional wet matrix application methods. We have developed a method which uses the application of matrix as a dry, finely divided powder, here referred to as dry matrix application, for the imaging of drug compounds. This appears to offer a complementary method to wet matrix application for the MALDI‐MSI of small molecules, with the alternative matrix application techniques producing different ion profiles, and allows the visualization of compounds not observed using wet matrix application methods. We demonstrate its value in imaging clozapine from rat kidney and 4‐bromophenyl‐1,4‐diazabicyclo(3.2.2)nonane‐4‐carboxylic acid from rat brain. In addition, exposure of the dry matrix coated sample to a saturated moist atmosphere appears to enhance the visualization of a different set of molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Mass spectrometry imaging (MSI) is a comprehensive tool for the analysis of a wide range of biomolecules. The mainstream method for molecular MSI is matrix‐assisted laser desorption ionization, however, the presence of a matrix results in spectral interferences and the suppression of some analyte ions. Herein we demonstrate a new matrix‐free MSI technique using nanophotonic ionization based on laser desorption ionization (LDI) from a highly uniform silicon nanopost array (NAPA). In mouse brain and kidney tissue sections, the distributions of over 80 putatively annotated molecular species are determined with 40 μm spatial resolution. Furthermore, NAPA‐LDI‐MS is used to selectively analyze metabolites and lipids from sparsely distributed algal cells and the lamellipodia of human hepatocytes. Our results open the door for matrix‐free MSI of tissue sections and small cell populations by nanophotonic ionization.  相似文献   

5.
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, 1 of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increase. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha‐cyano‐4‐hydroxycinnamic acid (α‐CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α‐CHCA was assessed in bovine serum albumin tryptic digests and compared with the control (α‐CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration, and specifically, 8 mM AmP and 10 mM AmP increased bovine serum albumin peptide signal intensities. In MALDI MSI of peptides, both 8 and 10 mM AmP in α‐CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α‐CHCA (AUC > 0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α‐CHCA matrix additive to enhance peptide signals in formalin‐fixed paraffin‐embedded (FFPE) tissues. Further, AmP as part of α‐CHCA matrix could enhance protein identifications and support MALDI MSI‐based proteomic approaches.  相似文献   

6.
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high‐resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.  相似文献   

7.
Mass spectrometry imaging (MSI) is used increasingly to simultaneously detect a broad range of biomolecules while mapping their spatial distributions within biological tissue sections. Matrix‐assisted laser desorption ionization (MALDI) is recognized as the method‐of‐choice for MSI applications due in part to its broad molecular coverage. In spite of the remarkable advantages offered by MALDI, imaging of neutral lipids, such as triglycerides (TGs), from tissue has remained a significant challenge due to ion suppression of TGs by phospholipids, e.g. phosphatidylcholines (PCs). To help overcome this limitation, silicon nanopost array (NAPA) substrates were introduced to selectively ionize TGs from biological tissue sections. This matrix‐free laser desorption ionization (LDI) platform was previously shown to provide enhanced ionization of certain lipid classes, such as hexosylceramides (HexCers) and phosphatidylethanolamines (PEs) from mouse brain tissue. In this work, we present NAPA as an MSI platform offering enhanced ionization efficiency for TGs from biological tissues relative to MALDI, allowing it to serve as a complement to MALDI‐MSI. Analysis of a standard lipid mixture containing PC(18:1/18:1) and TG(16:0/16:0/16:0) by LDI from NAPA provided an ~49 and ~227‐fold higher signal for TG(16:0/16:0/16:0) relative to MALDI, when analyzed without and with the addition of a sodium acetate, respectively. In contrast, MALDI provided an ~757 and ~295‐fold higher signal for PC(18:1/18:1) compared with NAPA, without and with additional Na+. Averaged signal intensities for TGs from MSI of mouse lung and human skin tissues exhibited an ~105 and ~49‐fold increase, respectively, with LDI from NAPA compared with MALDI. With respect to PCs, MALDI provided an ~2 and ~19‐fold increase in signal intensity for mouse lung and human skin tissues, respectively, when compared with NAPA. The complementary coverage obtained by the two platforms demonstrates the utility of using both techniques to maximize the information obtained from lipid MS or MSI experiments.  相似文献   

8.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   

9.
Mass spectrometry imaging (MSI) enables the spatial distributions of molecules possessing different mass‐to‐charge ratios to be mapped within complex environments revealing regional changes at the molecular level. Even at high mass resolving power, however, these images often reflect the summed distribution of multiple isomeric molecules, each potentially possessing a unique distribution coinciding with distinct biological function(s) and metabolic origin. Herein, this chemical ambiguity is addressed through an innovative combination of ozone‐induced dissociation reactions with MSI, enabling the differential imaging of isomeric lipid molecules directly from biological tissues. For the first time, we demonstrate both double bond‐ and sn‐positional isomeric lipids exhibit distinct spatial locations within tissue. This MSI approach enables researchers to unravel local lipid molecular complexity based on both exact elemental composition and isomeric structure directly from tissues.  相似文献   

10.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

11.
Reference samples are essential for mass spectrometric method optimization, data quality control, and target analyte quantitation. However, it is highly challenging to prepare an ideal homogeneous, standard‐spiked tissue sample for mass spectrometry imaging (MSI) research. Herein, we present a standard‐spiked 3D biomimetic tissue model fabricated with native cells, homogenate matrix, and biocompatible polymer. Unlike traditional homogenized tissue surrogates or those constructed with “on‐tissue” or “under‐tissue” micropipetting strategies, this simulated tissue shares both structural integrity of cells and homogeneous properties of matrix. As a result, analyte standards could undergo more in‐depth incorporation and has a more comparable native status with a real tissue. Series of tissue sections made from the 3D tissue model were proven to be feasible and useful for the parameter optimization, analyte quantitation, and calibration curve fitting for the air‐flow assisted desorption electrospray ionization MSI. Additionally, by analyzing the quality control model sections, we proposed a median principal component score calibration and demonstrated that this method can normalize instrumental fluctuations to stable levels in a large‐scale untargeted MSI experiments for the reliable metabolomic biomarker discovery. Thus, these results indicated that the standard‐spiked 3D biomimetic tissue has convincing significance in MSI analysis  相似文献   

12.
We have previously developed in‐parallel data acquisition of orbitrap mass spectrometry (MS) and ion trap MS and/or MS/MS scans for matrix‐assisted laser desorption/ionization MS imaging (MSI) to obtain rich chemical information in less data acquisition time. In the present study, we demonstrate a novel application of this multiplex MSI methodology for latent fingerprints. In a single imaging experiment, we could obtain chemical images of various endogenous and exogenous compounds, along with simultaneous MS/MS images of a few selected compounds. This work confirms the usefulness of multiplex MSI to explore chemical markers when the sample specimen is very limited. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Mass spectrometry imaging (MSI) simultaneously detects and identifies the spatial distribution of numerous molecules throughout tissues. Currently, MSI is limited to providing a static and ex vivo snapshot of highly dynamic systems in which molecules are constantly synthesized and consumed. Herein, we demonstrate an innovative MSI methodology to study dynamic molecular changes of amino acids within biological tissues by measuring the dilution and conversion of stable isotopes in a mouse model. We evaluate the method specifically on hepatocellular metabolism of the essential amino acid l ‐phenylalanine, associated with liver diseases. Crucially, the method reveals the localized dynamics of l ‐phenylalanine metabolism, including its in vivo hydroxylation to l ‐tyrosine and co‐localization with other liver metabolites in a time course of samples from different animals. This method thus enables the dynamics of localized biochemical synthesis to be studied directly from biological tissues.  相似文献   

14.
The spatial distribution of neutral lipids and semiochemicals on the surface of six‐day‐old separately reared naive Drosophila melanogaster flies has been visualized and studied using matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrometry and laser‐assisted desorption/ionization (LDI)‐TOF imaging (MSI). Metal targets were designed for two‐dimensional MSI of the surface of 3‐D biological objects. Targets with either simple grooves or profiled holes designed to accurately accommodate the male and female bodies were fabricated. These grooves and especially holes ensured correct height fixation and spatial orientation of the flies on the targets after matrix application and sample drying. For LDI‐TOF to be used, the flies were arranged into holes and fixed to a plane of the target using fast‐setting glue. In MALDI‐TOF mode, the flies were fixed as above and sprayed with a lithium 2,5‐dihydroxybenzoate matrix using up to 100 airbrush spray cycles. The scanning electron microscopy images revealed that the deposits of matrix were homogenous and the matrix formed mostly into the clusters of crystals (40–80 µm) that were separated from each other by an uncovered cuticle surface (30–40 µm). The MSI using target with profiled holes provided superior results to the targets with simple grooves, eliminating the ion suppression/mass deviation due to the 3‐D shape of the flies. Attention was paid to neutral lipids and other compounds including the male anti‐attractant 11‐cis‐vaccenyl acetate for which the expected distribution with high concentration on the tip of the male abdomen was confirmed. The red and blue mass shift (PlusMinus1 colour scale) was observed associated with mass deviation predominantly between ±0.2 and 0.3 Da. We use in‐house developed software for mass recalibration, to eliminate the mass deviation effects and help with the detection of low‐intensity mass signals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We investigated reduction of the matrix effect in time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) analysis by the deposition of a small amount of metal on the sample surfaces (metal‐assisted SIMS or MetA‐SIMS). The metal used was silver, and the substrates used were silicon wafers as electroconductive substrates and polypropylene (PP) plates as nonelectroconductive substrates. Irganox 1010 and silicone oil on these substrates were analyzed by TOF‐SIMS before and after silver deposition. Before silver deposition, the secondary ion yields from the substances on the silicon wafer and PP plate were quite different due to the matrix effect from each substrate. After silver deposition, however, both ion yields were enhanced, particularly the sample on the PP plate, and little difference was seen between the two substrates. It was therefore found that the deposition of a small amount of metal on the sample surface is useful for reduction of the matrix effect. By reducing the matrix effect using this technique, it is possible to evaluate from the ion intensities the order of magnitude of the quantities of organic materials on different substrates. In addition, this reduction technique has clear utility for the imaging of organic materials on nonuniform substrates such as metals and polymers. MetA‐SIMS is thus a useful analysis tool for solving problems with real‐world samples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Mass spectrometry imaging (MSI) is a powerful tool that has advanced our understanding of complex biological processes by enabling unprecedented details of metabolic biology to be uncovered. Through the use of high‐spatial resolution MSI, metabolite localizations can be obtained with high precision. Here we describe our recent progress to enhance the spatial resolution of matrix‐assisted laser desorption/ionization (MALDI) MSI from ∼50 μm with the commercial configuration to ∼5 μm. Additionally, we describe our efforts to develop a ‘multiplex MSI’ data acquisition method to allow more chemical information to be obtained on a single tissue in a single instrument run, and the development of new matrices to improve the ionization efficiency for a variety of small molecule metabolites. In combination, these contributions, along with the efforts of others, will bring MSI experiments closer to achieving metabolomic scale.  相似文献   

17.
脂质组学概念自2003年被提出以来,其已成为研究生物体、组织或细胞中脂质的结构、功能及代谢途径的一门学科。脂质的种类众多,同时结构非常复杂,脂质的分析充满了困难和挑战。基质辅助激光解吸电离质谱成像(MALDI MSI)分析技术不仅可以进行物质鉴定,而且可对被分析物进行空间分布成像,近年来,该技术广泛地应用于脂质组学的研究。该文介绍了MALDI MSI在脂质组学研究中的样品处理、基质喷涂及应用方面的研究进展,并就目前存在的问题及解决方案进行了探讨,以期扩展MALDI MSI的应用范围。  相似文献   

18.
19.
Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.  相似文献   

20.
Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. One of key challenges in molecular colocalization is that complex MSI data are too large for manual annotation but too small for training deep neural networks. Herein, we introduce a self-supervised clustering approach based on contrastive learning, which shows an excellent performance in clustering of MSI data. We train a deep convolutional neural network (CNN) using MSI data from a single experiment without manual annotations to effectively learn high-level spatial features from ion images and classify them based on molecular colocalizations. We demonstrate that contrastive learning generates ion image representations that form well-resolved clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear classifier based on confidently classified ion images. This new approach enables autonomous and high-throughput identification of co-localized species in MSI data, which will dramatically expand the application of spatial lipidomics, metabolomics, and proteomics in biological research.

Contrastive learning is used to train a deep convolutional neural network to identify high-level features in mass spectrometry imaging data. These features enable self-supervised clustering of ion images without manual annotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号