首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylic nanocomposite and flame retardant coatings with different acrylic polymers were prepared. The effect of molecular structure and molecular weight of acrylic resins and nanocomposite with nano-SiO2 on the interaction and char formation of ammonium polyphosphate-dipentaerythritol-melamine (APP-DPER-MEL) coating was investigated using differential thermal analysis (DTA), thermogravimetry (TG), Limiting Oxygen Index (LOI), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and fire protection test. The interaction of APP, DPER, MEL and 3F-1 acrylic resin led to the formation of intumescent coherent char at 300-450 °C. Owing to low molecular weight and lack of benzene rings, F-963 acrylic resin decomposed at lower temperature than APP, and hence their endothermic interaction was destroyed. The well-distributed nano-SiO2 particles in acrylic nanocomposite could modify char formation and anti-oxidation of char structure at high temperature. It is noted that the fire protection properties of nanocoating with acrylic nanocomposite were better than those of flame retardant coatings with conventional acrylic resins.  相似文献   

2.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

3.
The quantitative analysis of zinc phosphate (ZnP) on the flame resistance of intumescent flame retardant coatings (IFRCs) is presented including cone calorimeter (CC) and pyrolysis kinetics, using aliphatic waterborne polyurethane (AWP) as the coating binder. The CC results show that an appropriate dosage (2 wt%) of ZnP in the AWP‐based coating constitutes an improved flame resistance, evidenced by the fire performance index increased from 0.41 to 0.71 seconds m2 kW?1, as well as the reduced fire growth index. The characterization analysis determines the dehydrated ZnP facilitates the formed amorphous char‐residue with a heat‐sink effect, leading to an increase in heat absorption, which climbs from the 253.00to 351.30 J·g?1. Besides, the pyrolysis kinetics verifies that the 3D Jander model (n = 2) mainly governs the whole pyrolysis process of pure coatings by the modified Coats‐Redfern integral method. The ZnP‐containing coating exerts an improved Eα corresponding to 95–200°C, which climbs from 24.96 to 35.80 kJ mol?1, leading to the formation of a continuous and compact char layer. It explores an effective quantitative analysis of the flame resistance of organic–inorganic hybrid IFRCs, deepening the flame‐retarding mechanism.  相似文献   

4.
A triazine ring‐containing charring agent (PEPATA) was synthesized via the reaction between 2,6,7‐trioxa‐l‐phosphabicyclo‐[2.2.2]octane‐4‐methanol (PEPA) and cyanuric chloride. It was applied into intumescent flame retardant epoxy resins (IFR‐EP) as a charring agent. The effect of PEPATA on fire retardancy and thermal degradation behavior of IFR‐EP system was investigated by limited oxygen index (LOI), UL‐94 test, microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TG‐IR). The glass transition temperatures (Tg) of IFR‐EP systems were studied by dynamic mechanical analysis (DMA). The LOI values increased from 21.5 for neat epoxy resins (EPs) to 34.0 for IFR‐EP, demonstrating improved flame retardancy. The TGA curves showed that the amount of residue of IFR‐EP system was largely increased compared to that of neat EP at 700 °C. The new IFR‐EP system could apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers that slowed down the degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The triazine-based charring agent (CFA) with perfect charring ability was synthesized and characterized. The synergistic effects between CFA and aluminum phosphinate (AlPi) on flame retardancy, thermal degradation, and flammability properties of thermoplastic polyester-ether elastomer (TPEE) were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test (CCT), thermogravimetric analysis (TGA), laser Raman spectroscopy (LSR) and scanning electron microscopy (SEM). The results from UL-94 test showed that, by compounding 14 wt% AlPi and 4 wt% CFA with TPEE, the LOI value reached 28.5% and the UL-94 rating reached V-0 (1.6 mm). TGA results indicated that there is good synergistic charring ability between CFA and AlPi, especially the increased residues at high temperature (T > 700 °C). The CCT test results showed that CFA could change the combustion behavior of TPEE and effectively accelerate the formation of expanded carbon layers. The residues after combustion were measured by LRS and SEM, demonstrating that CFA can promote the formation of dense and stable carbon layers during the combustion, which could inhibit the melt dropping and improve the fire retardancy of TPEE composites. Thus, CFA was a promising synergistic agent in halogen-free flame retardant TPEE.  相似文献   

6.
The synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate (MAPP) on the thermal and flame retardancy of polypropylene (PP) are investigated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, thermogravimetric analysis (TGA), scanning electron micrograph (SEM), and water resistance test. The results of cone calorimetry show that heat release rate peak (PHRR), total heat release (THR), and the mass loss of PP with 30 wt% intumescent flame retardant (IFR, CFA/MAPP = 1:2) decreases remarkably compared with that of pure PP. The HRR, THR, and mass loss decrease, respectively from 1140 to 100 kW/m2, from 96 to 16.8 MJ/m2, and from 100 to 40%. The PP composite with CFA/MAPP = 1:2 has the best water resistance, and it can still obtain a UL‐94 V‐0 rating after 168 hr soaking in water. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Novel intumescent flame retardant polypropylene (PP) composites were prepared based on a char forming agent (CFA) and silica-gel microencapsulated ammonium polyphosphate (Si-MCAPP). The thermal and flame retardancy of flame retardant PP composites were investigated by limiting oxygen index, UL-94 test, cone calorimetry, thermogravimetric analysis, scanning electron micrograph, and water resistance test. The results of cone calorimetry show that the flame retardant properties of PP with 30 wt% novel intumescent flame retardants (CFA/Si-MCAPP = 1:3) improve greatly. The peak heat release rate and total heat release decrease, respectively, from 1,140.0 to 156.8 kW m?2 and from 96.0 to 29.5 MJ m?2. The PP composite with CFA/Si-MCAPP = 1:3 has the excellent water resistance, and it can still obtain a UL-94 V-0 rating after 168 h soaking in water.  相似文献   

8.
A series of UV‐curable flame retardant resins was obtained using epoxy acrylate (EA) modified with 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA). The flammability was characterized by limiting the oxygen index (LOI), UL 94 and cone calorimeter, and the thermal degradation of the flame retardant resins was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). The results indicated that the flame retardant efficiency increases and the heat release rate (HRR) decreases greatly with the content of PEPA. The TG data showed that the modified epoxy acrylates (MEAs) have lower initial decomposition temperatures and higher char residues than pure EA. The RTFTIR study indicates that the MEAs have lower thermal oxidative stability than the pure EA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine),defined as PPAP,was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid,and the dehydration polymerization under heating in nitrogen atmosphere.Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy,13C and 31p solid-state nuclear magnetic resonance measurements.The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets.The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI),vertical burning (UL-94),thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests.The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),respectively.The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets.The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability.Meanwhile,the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect,which led to a higher char yield at high temperature.The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient,more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion.The formed char layer with high quality effectively prevented the heat transmission and diffusion,limited the production of combustible gases,and inhibited the emission of smoke,leading to the reduction of heat and smoke release.  相似文献   

10.
The fire performance of polystyrene‐organic montmorillonite (OMMT) nanocomposite was investigated by limiting oxygen index (LOI) and cone calorimetry. Scanning electron microscopy, electron dispersive spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to study the charring process of the nanocomposite. The residue collected upon thermal degradation was analyzed by various means to determine its composition and to understand the flame‐retardant mechanism of the nanocomposite. It has been shown that the introduction of OMMT does not have much influence on LOI of the nanocomposite, but can greatly decrease the heat release rate (HRR) and mass loss rate (MLR) and enhance the flame retardancy of the material. The flame‐retardant mechanism is due to charring in the condensed phase. The intercalated nanostructure is destroyed, and the silicate nanolayers in the nanocomposite rearrange and accumulate on the material surface during pyrolysis. The charred residue has a honeycomb‐like porous structure, which covers on the material surface and serves as a protection barrier against heat transfer and mass exchange, leading to enhanced flame retardancy. The charred residue is composed of pyrolyzed silicate layers and graphitic char. The char is highly stable in nitrogen even at 800 °C, but thermo‐oxidative decomposition is allowed, and it can be removed completely in the presence of air. Due to the porous structure of the charred residue, the protection from it is mainly to reduce the HRR and MLR and retard burning of the material. It is not enough to make the nanocomposite self‐extinguish. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The flame retardancy and thermal degradation properties of polypropylene (PP) containing intumescent flame retardant additives, i.e. melamine pyrophosphate (MPyP) and charring‐foaming agent (CFA) were characterized by limiting oxygen index (LOI), UL 94, cone calorimeter, microscale combustion calorimetry, and thermogravimetric analysis (TGA). It has been found that the PP material containing only MPyP does not show good flame retardancy even at 30% additive level. Compared with the PP/MPyP binary system, the LOI values of the PP/MPyP/CFA ternary materials at the same additive loading are all increased, and UL 94 rating is raised to V‐0 from no rating (PP/MPyP). The cone calorimeter results show that the heat release rate and mass loss rate of some ternary materials decrease in comparison with the binary material. The microscale combustion calorimetry results indicate that the sample containing 22.5 wt% MPyP and 7.5 wt% CFA has the lowest heat release rate among all samples. The TGA results show that the thermal stability of the materials increases with the addition of MPyP, while decreases with the addition of CFA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
高洪泽 《大学化学》2016,31(1):33-40
本文结合阻燃科学技术,对阻燃剂及其应用、阻燃剂处理方法及加工技术、防火涂料、防火板和防火液的基本原理与加工技术中所蕴含和运用的化学知识和原理进行系统归纳和整理,以期加强消防专业化学教学的针对性和实用性,激发消防专业学生学习化学的兴趣,同时为其他化学教学提供实践教学案例。  相似文献   

13.
A novel curing and flame‐retardant agent (PEPA‐TMAC) was successfully synthesized. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Use of PEPA‐TMAC as part of the curing agent in combination with another anhydride for a commercial epoxy resin (EP) was studied. Results of differential scanning calorimetry (DSC) indicated that PEPA‐TMAC was an effective curing agent for EP. The dynamic mechanical analysis (DMA) results showed that the glass transition temperature (Tg) and cross‐linking density (Ve) of EP composites exhibited an increase trend with the addition of PEPA‐TMAC. The limiting oxygen index (LOI) value of EP composites reached 26.9%, and the cone calorimeter results indicated that peak heat release rate (PHRR), total heat release (THR), smoke produce rate (SPR), and total smoke produce (TSP) remarkably decreased with increasing PEPA‐TMAC content. TGA data showed that the addition of PEPA‐TMAC greatly increased the amount of residual char during combustion. The morphology of the residual char was studied by SEM and showed that the addition of PEPA‐TMAC greatly increased the stability of EP composites. The thermogravimetric analysis (TGA), energy‐dispersive X‐ray spectroscopy (EDS), and FTIR results revealed the flame‐retardant mechanism that PEPA‐TMAC can promote the formation of charred layers with the phospho‐carbonaceous complexes in the condensed phase during burning of EP composites.  相似文献   

14.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The morphology, thermal degradation, and flame retardancy of epoxy (EP) composites containing microcrystalline cellulose whisker (MCW) and microencapsulated ammonium polyphosphate (MFAPP) were investigated using optical microscopy, limiting oxygen index (LOI), UL-94, thermogravimetry (TG), microscale combustion calorimeter, and TG-FTIR. EP/MFAPP/MCW composites can pass V-0 in UL-94 test at 6 wt% loading, and its peak heat release rate decreases when compared with EP and EP/MFAPP. The reason is that the presence of MCW strengthens the charring capacity of EP composites in a fire. The results of TG and TG-FTIR show that at low temperature, MFAPP stimulates the dehydration of MCW and EP, and produces gas which is helpful for the formation of an intumescent char. Moreover, the residue at high temperature does not release any flammable gas and is a good insulation layer on the surface of the sample, which protects the underlying material in a fire.  相似文献   

16.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2‐dimethyl‐1,3‐propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro‐intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL‐94 V‐0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro‐intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Pyrolysis and fire behaviour of a phosphorus polyester (PET-P-DOPO) have been investigated. The glycol ether of the hydroquinone derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide was used as a reactive halogen-free flame retardant in PET-P-DOPO. PET-P-DOPO is proposed as an alternative to poly(butylene terephthalate) (PBT) with established halogen-free additives. It exhibits a high LOI (39.3%) and achieves V-0 classification in the UL 94 test. Three different mechanisms (flame inhibition, charring and a protection effect by the intumescent char) contribute to the flame retardancy in PET-P-DOPO and were quantified with respect to different fire risks. The fire load was reduced by 66% of the PBT characteristic. The reduction is the superposition of the relative reduction due to flame inhibition (factor 0.625) and charring (factor 0.545). The peak of heat release rate (pHRR) was reduced by 83% due to flame inhibition, charring and the protection properties of the char (factor 0.486). The strength of all three mechanisms is in the same order of magnitude. The intumescent multicellular structure enables the char to act as an efficient protection layer. PBT flame-retarded with aluminium diethylphosphinate was used as a benchmark to assess the performance of PET-P-DOPO absolutely, as well as versus the phosphorus content. PET-P-DOPO exhibits superior fire retardancy, in particular due to the additional prolongation of the time to ignition and increase in char yield. PET-P-DOPO is a promising alternative material for creating halogen-free flame-retarded polyesters.  相似文献   

18.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Styrene-butyl acrylate copolymer based fire retardant coatings were prepared using intumescent flame-retardant additives and mineral clay type rheological additives. Three different widely used nanoclays, organic-modified montmorillonite, palygorskite and sepiolite were applied in order to determine their effect on the flame retardancy. Significant differences were found when their heat-shielding activities were evaluated. It was observed that the addition of different clay particles in amount of 0.25 w% changes the char formation process; the height, the morphology, the structure and also the mechanical resistance of the protecting shield. The different geometry and composition of the additives induced different changes in fire performance. In case of palygorskite the catalytic effect of Fe accelerated mainly the thermal decomposition, therefore the fire resistance decreased. The plate-like montmorillonite reduced the extent of the intumescent char, whereas also improved the mechanical and sustained heat resistance of the fire protecting shield. The fibrous sepiolite of low Fe content assisted the development of efficient protecting shield, which exhibited optimal cell structure, suitable thickness, and thus ensured better heat-insulating performance. Consequently, fire retardant effect of sepiolite was found to be better than the other studied clay types.  相似文献   

20.
A series of novel phosphorus-boron flame retardants (BPEAs) were successfully synthesized by introducing boric acid (BA) into cyclic phosphate ester acid (PEA) via the esterification and thoroughly characterized by 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Five kinds of transparent fire-retardant coatings applied to wood substrates were produced by thoroughly mixing amino resin with PEA and BPEAs. The effects of BA on the optical transparency, thermal stability, fire performance and smoke emission characteristics of the coatings were investigated by various analytical instruments. The transparency analysis reveals that the transparency value of the coatings gradually decreases with increasing BA loading, and MPEA4 with the highest BA content still exhibits a high degree of transparency. The results from fire protection, cone calorimeter and smoke density tests show that the introduction of BA greatly decreases the flame spread rating, mass loss, char index, heat release rate, smoke production rate, total heat release, total smoke release and specific optical density of the coatings concomitant with the increase in the residual mass and intumescent factor, which is ascribed to the formation of a more dense and continuous intumescent char judging by digital photographs and scanning electron microscope images. Thermo-gravimetric analysis indicates that the onset decomposition temperature, high-temperature stability and residual mass of the coatings greatly improve with increasing BA content. FTIR analysis shows that the introduction of BA into the coatings contributes to generate more phosphorus-rich cross-linked structures and aromatic structures and then create a compact and intumescent char layer, thereby effectively enhancing the flame retardancy and smoke suppression properties of the coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号