首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
将改性后的海泡石添加到聚磷酸铵(APP)和双季戊四醇(DPER)膨胀阻燃聚丙烯(PP/IFR)体系中,采用氧指数(LOI)、热重分析(TGA)、光电子能谱(XPS)、傅里叶变换红外(FTIR)光谱、锥形量热仪(CONE)和扫描电镜(SEM)考察其对膨胀阻燃体系的催化协效作用,探讨作用机理.LOI结果表明,改性的海泡石比纳米水滑石和有机改性的蒙脱土有更好的催化协效作用.CONE数据证实,海泡石可以降低膨胀阻燃聚丙烯体系的热释放速率和总的热释放量.通过观察SEM图片发现,海泡石可以改善膨胀炭层的形貌,提高炭层的隔热隔质性能.TGA结果表明,在氮气和空气气氛下,海泡石均可以提高膨胀炭层的热稳定性,增加高温时残余物的量,其主要作用对象为APP.FTIR和XPS测试发现加热过程中海泡石可以与APP发生化学反应,形成P—O—Si键,增加了APP高温时的稳定性.  相似文献   

4.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
《先进技术聚合物》2018,29(6):1804-1814
Urea formaldehyde microsphere (UFM) was prepared and used with organic montmorillonite (OMMT) to modify the flame retardant efficiency of ethylene vinyl acetate copolymer (EVA)/intumescent flame retardant (IFR) composites. The results show that single IFR may modify the flame retardancy of EVA, but its efficiency is not good enough. The EVA composite containing 21 wt% IFR is just classified the UL_94 V2 and has a limiting oxygen index (LOI) 24.7 vol%. Combining UFM with IFR does not improve the flame retardancy of EVA/IFR composites, and blending OMMT with IFR only improves its LOI. Adding 2 wt% UFM, 2 wt% OMMT, and 17 wt% IFR into EVA, it obtains the UL_94 V0 without melt dripping and a LOI 29.0 vol%. Also, the peak heat release rate and total heat release decrease a lot. Good synergistic effects among IFR, UFM, and OMMT improve the char residues and modify the char micromorphology of EVA composites, which provide better protect for the underlying resin.  相似文献   

6.
合成了一种9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)的衍生物——聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP), 以间苯二胺(m-PDA)为固化剂, 环氧树脂(EP)为基料, POPP为阻燃剂, 复配聚磷酸铵(APP), 制备了不同磷含量的阻燃环氧树脂. 利用极限氧指数(LOI)和垂直燃烧(UL94)实验表征了环氧树脂的阻燃性能; 以热重分析、 锥型量热和扫描电镜分析了阻燃环氧树脂的热性能和表面形态. 研究结果表明, 阻燃剂总加入量(质量分数)为5%时即可达到UL94 V-0级, 同时LOI值为27.7%; 当总加入量为15%, 即wPOPP=5%, wAPP=10 %时, 其LOI值可达到33.8%. 随着磷含量的增加, 阻燃环氧树脂的初始降解温度略有降低, 但高温下的残炭率明显增加. POPP/APP的加入在很大程度上降低了环氧树脂的热释放速率、 有效燃烧热、 烟释放量和有毒气体释放量. 阻燃环氧树脂在高温下形成比较稳定的致密膨胀炭层, 为底层的环氧树脂主体隔绝了分解产物及热量和氧气交换, 增强了高温下的热稳定性.  相似文献   

7.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

8.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2‐dimethyl‐1,3‐propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro‐intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL‐94 V‐0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro‐intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A triazine ring‐containing charring agent (PEPATA) was synthesized via the reaction between 2,6,7‐trioxa‐l‐phosphabicyclo‐[2.2.2]octane‐4‐methanol (PEPA) and cyanuric chloride. It was applied into intumescent flame retardant epoxy resins (IFR‐EP) as a charring agent. The effect of PEPATA on fire retardancy and thermal degradation behavior of IFR‐EP system was investigated by limited oxygen index (LOI), UL‐94 test, microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TG‐IR). The glass transition temperatures (Tg) of IFR‐EP systems were studied by dynamic mechanical analysis (DMA). The LOI values increased from 21.5 for neat epoxy resins (EPs) to 34.0 for IFR‐EP, demonstrating improved flame retardancy. The TGA curves showed that the amount of residue of IFR‐EP system was largely increased compared to that of neat EP at 700 °C. The new IFR‐EP system could apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers that slowed down the degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
高抗冲聚苯乙烯/蒙脱土复合材料的阻燃性研究   总被引:11,自引:0,他引:11  
用经十六烷基三甲基溴化铵有机化改性的蒙脱土 (OMMT)与高抗冲聚苯乙烯 (HIPS)通过熔融插层法制备了HIPS OMMT复合材料 ,用X ray衍射技术对材料结构进行了表征 ,发现钠基蒙脱土 (Na+ MMT)和有机蒙脱土的层间距分别为 1 5 1nm和 2 18nm ,HIPS OMMT(5phr)复合材料中蒙脱土的层间距因聚合物大分子的插入扩大为 3 4 4nm ;而HIPS与Na+ MMT形成的复合材料的层间距与Na+ MMT的层间距相比却没有变化 ,表明未有机化处理土没有形成插层结构 .锥形量热仪的研究结果表明HIPS OMMT复合材料的热释放速率、质量损失速率以及生烟速率等燃烧特性参数均显著降低 ,具有较明显的阻燃性和抑烟性 ,而HIPS Na+ MMT非插层型复合材料只有在Na+ MMT很高填充量下 (>2 0phr)才有一定阻燃效果 .比较了铵盐对HIPS阻燃性的影响 ,结果表明铵盐自身的阻燃作用很小 ,主要是插层复合结构起阻燃作用 .  相似文献   

11.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

12.
采用原位聚合法制备了蜜胺树脂(MF)和环氧树脂(EP)双层包裹聚磷酸铵(APP),得到一种新型核壳结构的微胶囊阻燃剂(EMFAPP).用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征;用极限氧指数(LOI)、垂直燃烧等级测试(UL 94)对EMFAPP在EP中的阻燃性能进行了研究.EMFAPP在EP基体中阻燃性能优异,当其添加量大于7%时EP/EMFAPP均通过UL 94 V-0级,LOI值达27.0%以上.与未包裹APP相比,EMFAPP耐水性明显提高;经水处理(75℃,6天)后,EMFAPP/EP仍可保持良好的阻燃性能.采用热重分析对EMFAPP及其阻燃复合物的热降解行为进行了研究,EMFAPP能够促进成炭,EP/EMFAPP(8 wt%)在700℃残炭率达16.2%,但其低温稳定性有所下降.此外,利用热失重-红外联用对EMFAPP/EP的热降解行为进行了研究,探讨相关阻燃机理.  相似文献   

13.
In order to solve the “candlewick effect” caused by glass fibers, which results in the decrease of flame retardancy of flame-retardant long-glass-fiber-reinforced polypropylene (LGFPP) systems, and the deterioration of mechanical properties caused by adding an additional amount of flame retardants compared with flame-retardant non-glass-fiber-reinforced polypropylene systems so as to keep a same flame retardancy, a novel intumescent flame retardant (IFR) system, which is composed of a charring agent (CA), ammonium polyphosphate (APP) and organically-modified montmorillonite (OMMT), was used to flame retard LGFPP. The thermal stability, combustion behavior, char formation, flame retardant mechanism and mechanical properties of the IFR-LGFPP samples were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, cone calorimeter test, scanning electronic microscopy, and mechanical property tests. When the content of IFR is 20 wt%, the LOI value of IFR-LGFPP reaches 31.3, and the vertical burning test reaches UL-94 V-0 rating, solving the “candlewick effect” caused by long glass fiber without additional amount of the IFR. All the relevant cone calorimeter parameters also show that IFR-LGFPP has much better flame-retardant behaviors than LGFPP. Furthermore, the mechanical properties of IFR-LGFPP almost remain unchanged in comparison with those of LGFPP containing no IFR. The flame retardant mechanism was also discussed.  相似文献   

14.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

15.
A novel halogen-free flame retardant prepared by poly(p-ethylene terephthalamide) and ammonium polyphosphate (APP) on acrylonitrile–butadiene–styrene (ABS) resin has a good flame retardancy when loading is 30 %; but, once the mass fraction is <30 %, the system does not maintain outstanding flame retardancy. To improve the efficiency of this kind of flame retardant and LOI values, higher thermal stability acid source-red phosphorus is introduced. It is found that a little quantity of red phosphorus will improve the flame retardancy of ABS remarkably and will change the process of charring; when the mass fractions of APP, PPTA, and red phosphorus are only 15, 5, and 2 %, respectively, though the LOI of flame-retardant ABS is 27, UL-94 vertical burning test still reach V-0. Thermogravimetric analysis data show that red phosphorus changes the thermal degradation behavior of IFR-ABS system, shrink digital photo display system, and yield more stable residue at higher temperature; Fourier transform infrared results and scanning electron microscopic micrographs show that red phosphorus can catalyze the charring and form much denser char to improve the flame-retardant performance of the materials.  相似文献   

16.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

17.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The natural basalt fiber (BF) was incorporated into EVA composites with environmental‐friendly nickel alginate‐brucite based flame retardant (NiFR), to further improve the flame‐retardant effect and mechanical properties. The flame retardancy of EVA composites were characterized by LOI, UL 94, and cone test. With 55 wt% loading, 3BF/52NiFR had the highest LOI value of 31.9 vol.% in all fiber reinforced composites and pass UL 94V‐0 ratting. And comparing to 55B composite with untreated brucite, 3BF/52NiFR decreased peak of heat release rate by 47.8%, total heat release by 21.9%, and total smoke production by 35.5% and kept more residue 54.0% during cone test. Moreover, 3BF/52NiFR also enhanced the mechanical properties of composites by better compatibility with EVA matrix. BF/NiFR exert synergistic flame‐retardant effect major in promoting charring effect in condensed phase during combustion. The fire‐resisted and rigid BF into the char layer reinforced the intensity of protective barrier which prolonged the residence time of pyrolysis carbonaceous groups degraded from EVA matrix, resulting in less heat and smoke release.  相似文献   

19.
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine),defined as PPAP,was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid,and the dehydration polymerization under heating in nitrogen atmosphere.Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy,13C and 31p solid-state nuclear magnetic resonance measurements.The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets.The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI),vertical burning (UL-94),thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests.The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),respectively.The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets.The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability.Meanwhile,the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect,which led to a higher char yield at high temperature.The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient,more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion.The formed char layer with high quality effectively prevented the heat transmission and diffusion,limited the production of combustible gases,and inhibited the emission of smoke,leading to the reduction of heat and smoke release.  相似文献   

20.
Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号