首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis, reactivity, and potential of well‐defined dinuclear gold complexes as precursors for dual gold catalysis are explored. Using the preorganizing abilities of the ditopic PNHPiPr ( LH ) ligand, dinuclear AuI–AuI complex 1 and mixed‐valent AuI–AuIII complex 2 provide access to structurally characterized chlorido‐bridged cationic species 3 and 4 upon halide abstraction. For 2 , this transformation involves unprecedented two‐electron oxidation of the redox‐active ligand, generating a highly rigidified environment for the Au2 core. Facile reaction with phenylacetylene affords the σ,π‐activated phenylacetylide complex 5 . When applied in the dual gold heterocycloaddition of a urea‐functionalized alkyne, well‐defined precatalyst 3 provides high regioselectivities for the anti‐Markovnikov product, even at low catalyst loadings, and outperforms common mononuclear AuI systems. This proof‐of‐concept demonstrates the benefit of preorganization of two gold centers to enforce selective non‐classical σ,π‐activation with bifunctional substrates.  相似文献   

2.
A tetranuclear silver(I) N‐heterocyclic carbene (NHC) complex bearing a macrocyclic, exclusively methylene‐bridged, tetracarbene ligand was synthesized and employed as transmetalation agent for the synthesis of nickel(II), palladium(II), platinum(II), and gold(I) derivatives. The transition metal complexes exhibit different coordination geometries, the coinage metals being bound in a linear fashion forming molecular box‐type complexes, whereas the group 10 metals adapt an almost ideal square planar coordination geometry within the ligand's cavity, resulting in saddle‐shaped complexes. Both the AgI and the AuI complexes show ligand‐induced metal–metal contacts, causing photoluminescence in the blue region for the gold complex. Distinct metal‐dependent differences of the coordination behavior between the group 10 transition metals were elucidated by low‐temperature NMR spectroscopy and DFT calculations.  相似文献   

3.
Two gold(I) complexes of the (NHC)AuX type bearing a triazole‐based N‐heterocyclic carbene (NHC) ligand (1‐tert‐butyl‐4‐(4‐methylphenyl)‐3‐phenyl‐1H‐1,2,4‐triazol‐4‐ium‐5‐ylidene) and various halide ligands (X = Br, I) were synthesized and characterized in solution using NMR spectroscopy as well as in the solid state using X‐ray diffraction techniques. The cytotoxic properties of both compounds and the precursor, (NHC)AuCl, were screened against a panel of human tumour cell lines including liver cancer (HepG2), cervical cancer (HeLa S3) and leukaemia (CCRF‐CEM, HL‐60) and compared to cisplatin and auranofin. It was found that the activities of the chloro and bromo derivatives were generally superior to that of cisplatin and slightly less effective compared to auranofin, except for HepG2 cells where auranofin was not as effective. In addition, the ability to induce membrane phosphatidyl serine externalization as a hallmark of apoptosis in CCRF‐CEM leukaemic cells was investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The synthesis and characterization of original NHC ligands based on an imidazo[1,5‐a]pyridin‐3‐ylidene (IPy) scaffold functionalized with a flanking barbituric heterocycle is described as well as their use as tunable ligands for efficient gold‐catalyzed C?N, C?O, and C?C bond formations. High activity, regio‐, chemo‐, and stereoselectivities are obtained for hydroelementation and domino processes, underlining the excellent performance (TONs and TOFs) of these IPy‐based ligands in gold catalysis. The gold‐catalyzed domino reactions of 1,6‐enynes give rise to functionalized heterocycles in excellent isolated yields under mild conditions. The efficiency of the NHC gold 5Me complex is remarkable and mostly arises from a combination of steric protection and stabilization of the cationic AuI active species by ligand 1Me .  相似文献   

5.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

6.
Materials exhibiting excitation wavelength‐dependent photoluminescence (Ex‐De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti‐counterfeiting. Two multifunctional, chiral [Au(NHC)2][Au(CN)2] (NHC=(4R,5R)/(4S,5S)‐1,3‐dimethyl‐4,5‐diphenyl‐4,5‐dihydro‐imidazolin‐2‐ylidene) complex double salts display Ex‐De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI???AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI???AuI distances. An anti‐counterfeiting application using these two salts is demonstrated.  相似文献   

7.
The synthesis and characterization of original NHC ligands based on an imidazo[1,5‐a]pyridin‐3‐ylidene (IPy) scaffold functionalized with a flanking barbituric heterocycle is described as well as their use as tunable ligands for efficient gold‐catalyzed C?N, C?O, and C?C bond formations. High activity, regio‐, chemo‐, and stereoselectivities are obtained for hydroelementation and domino processes, underlining the excellent performance (TONs and TOFs) of these IPy‐based ligands in gold catalysis. The gold‐catalyzed domino reactions of 1,6‐enynes give rise to functionalized heterocycles in excellent isolated yields under mild conditions. The efficiency of the NHC gold 5Me complex is remarkable and mostly arises from a combination of steric protection and stabilization of the cationic AuI active species by ligand 1Me .  相似文献   

8.
AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.  相似文献   

9.
Two small‐molecule–drug conjugates (SMDCs, 6 and 7 ) featuring lysosomally cleavable linkers (namely the Val–Ala and Phe–Lys peptide sequences) were synthesized by conjugation of the αvβ3‐integrin ligand cyclo[DKP–RGD]‐CH2NH2 ( 2 ) to the anticancer drug paclitaxel (PTX). A third cyclo[DKP–RGD]–PTX conjugate with a nonpeptide “uncleavable” linker ( 8 ) was also synthesized to be tested as a negative control. These three SMDCs were able to inhibit biotinylated vitronectin binding to the purified αVβ3‐integrin receptor at nanomolar concentrations and showed good stability at pH 7.4 and pH 5.5. Cleavage of the two peptide linkers was observed in the presence of lysosomal enzymes, whereas conjugate 8 , which possesses a nonpeptide “uncleavable” linker, remained intact under these conditions. The antiproliferative activities of the conjugates were evaluated against two isogenic cell lines expressing the integrin receptor at different levels: the acute lymphoblastic leukemia cell line CCRF‐CEM (αVβ3?) and its subclone CCRF‐CEM αVβ3Vβ3+). Fairly effective integrin targeting was displayed by the cyclo[DKP–RGD]–Val–Ala–PTX conjugate ( 6 ), which was found to differentially inhibit proliferation in antigen‐positive CCRF‐CEM αVβ3 versus antigen‐negative isogenic CCRF‐CEM cells. The total lack of activity displayed by the “uncleavable” cyclo[DKP–RGD]–PTX conjugate ( 8 ) clearly demonstrates the importance of the peptide linker for achieving the selective release of the cytotoxic payload.  相似文献   

10.
A mononuclear bis(NHC)/AuI (NHC=N‐heterocyclic carbene) cationic complex with a rigid bis(phosphane)‐functionalized NHC ligand (PCNHCP) was used to construct linear Au3 and Ag2Au arrays, a Au5 cluster with two intersecting crosslike Au3 arrays, and an unprecedented Cu6 complex with two parallel Cu3 arrays. The impact of metallophilic interactions on photoluminescence was studied experimentally.  相似文献   

11.
An NHC‐coordinated diphosphene is employed as ligand for the synthesis of a hydrocarbon‐soluble monomeric AuI hydride, which readily adds CO2 at room temperature yielding the corresponding AuI formate. The reversible reaction can be expedited by the addition of NHC, which induces β‐hydride shift and the removal of CO2 from equilibrium through the formation of an NHC‐CO2 adduct. The AuI formate is alternatively formed by dehydrogenative coupling of the AuI hydride with formic acid (HCO2H), thus in total establishing a reaction sequence for the AuI hydride mediated dehydrogenation of HCO2H as chemical hydrogen storage material.  相似文献   

12.
Monometallic gold(I)‐alkynyl‐helicene complexes ( 1 a , b ) and bimetallic gold(I)‐alkynyl‐helicene architectures featuring the presence ( 2 a , b ) or absence ( 3 a , b ) of aurophilic intramolecular interactions were prepared by using different types of phosphole ligands (mono‐phosphole L1 or bis‐phospholes L2 , 3 ). The influence of the AuI d10 metal center(s) on the electronic, photophysical, and chiroptical properties of these unprecedented phosphole‐gold(I)‐alkynyl‐helicene complexes was examined. Experimental and theoretical results highlight the importance of ligand‐to‐ligand‐type charge transfers and the strong effect of the presence or absence of AuI–AuI interactions in 2 a , b .  相似文献   

13.
Herein, we disclose the gold‐catalyzed 1,2‐diarylation of alkenes through the interplay of ligand‐enabled AuI/AuIII catalysis with the idiosyncratic π‐activation mode of gold complexes. Unlike the classical migratory‐insertion‐based approach to 1,2‐diarylation, the present approach not only circumvents the formation of direct Ar?Ar′ coupling and Heck‐type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate‐limiting step owing to the non‐innocent nature of the aryl alkene.  相似文献   

14.
The compound [(μ‐dppp)(AuCl)2], previously reported to associate intermolecularly in a chain (catena) structure through AuI–AuI interactions (3.316Å), was obtained from gold(III) precursors in a cyclo form with shortened intramolecular AuI—AuI contacts at 3.237Å and a puckered AuPCCCPAu seven‐membered ring. DFT calculations using a large relativistic basis to account for the d10–d10 interaction reproduce the observed molecular structure in the crystal of this “linkage isomer”, including the conspicuous distortion at one of the gold atoms. The chelate complex [(dppp)PtCl2] was crystallized and structurally characterized as the dichloromethane solvate.  相似文献   

15.
Metal–metal bonding interactions have been employed as an efficient strategy to generate a number of unique gold(I) metallo‐macrocycles with fascinating functions. The self‐assembly, crystal structure and emission property of novel nest‐like tetramer 14 , namely, {[Au4(μ‐dppm)2(μ‐dctp2?)](BF4)2}4 ? (CH3CN)2 (dppm=bis(diphenylphosphino)methane, dctp2?=N,N′‐bis(dicarbodithioate)‐2,11‐diaza[3.3]paracyclophane) is reported. The complex has been characterized by single‐crystal X‐ray diffraction analysis, 1H NMR spectroscopy, 13C NMR spectroscopy, and CSI‐MS spectrometry. The aggregate demonstrates the sixteen gold(I) atoms are arranged in a ring with a circumference of 50.011(68) Å generated by AuI???AuI attractions. UV/visible and luminescence spectroscopy revealed that this AuI???AuI bonded metallo‐macrocycle exhibited yellow phosphorescence.  相似文献   

16.
Gold(I) N‐heterocyclic carbene (AuI‐NHC) complexes have emerged as potential anticancer agents owing to their high cytotoxicity and stability. Integration of their above unique functions with customized aggregation‐induced emission (AIE) luminogens to achieve specific bioimaging and efficient theranostics to cancer is highly desirable but is rarely studied. Now, a series of novel AuI‐NHC compounds were developed with AIE characteristics. A complex with a PPh3 ligand was selected out as it could achieve both prominent specific imaging of various cancer cells and efficient inhibition of their growth with negligible toxic effects on normal cells due to the targeting binding and strong inhibition towards thioredoxin reductase. This complex could also act as a powerful radiosensitizer to boost the anticancer efficacy with performance superior to that of popularly used auranofin. It holds great potential as a specific and effective theranostic drug in cancer diagnosis and precise therapy.  相似文献   

17.
A triazolyl‐di‐ylidene ligand has been used for the preparation of a homodimetallic complex of gold, and a heterodimetallic compound of gold and iridium. Both complexes have been fully characterized and their molecular structures have been determined by means of X‐ray diffraction. The catalytic properties of these two complexes have been evaluated in the reduction of nitroarenes by transfer hydrogenation using primary alcohols. The two complexes afford different reaction products; whereas the AuI–AuI catalyst yields a hydroxylamine, the IrIII–AuI complex facilitates the formation of an imine.  相似文献   

18.
A new class of cyclometalated AuIII complexes containing various bidentate C‐deprotonated C^N and cis‐chelating bis(N‐heterocyclic carbene) (bis‐NHC) ligands has been synthesized and characterized. These are the first examples of AuIII complexes supported by cis‐chelating bis‐NHC ligands. [Au(C^N)(bis‐NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax) at 498–633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The AuIII complex containing a C^N (C‐deprotonated naphthalene‐substituted quinoline) ligand with extended π‐conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate‐functionalized bis‐NHC ligand, four water‐soluble luminescent AuIII complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water‐soluble AuIII complex with C‐deprotonated naphthalene‐substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water‐soluble AuIII complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 μM .  相似文献   

19.
Supramolecular ensembles adopting ring‐in‐ring structures are less developed compared with catenanes featuring interlocked rings. While catenanes with inter‐ring closed‐shell metallophilic interactions, such as d10–d10 AuI–AuI interactions, have been well‐documented, the ring‐in‐ring complexes featuring such metallophilic interactions remain underdeveloped. Herein is described an unprecedented ring‐in‐ring structure of a AuI‐thiolate Au12 cluster formed by recrystallization of a AuI‐thiolate Au10 [2]catenane from alkane solvents such as hexane, with use of a bulky dibutylfluorene‐2‐thiolate ligand. The ring‐in‐ring AuI‐thiolate Au12 cluster features inter‐ring AuI–AuI interactions and underwent cluster core change to form the thermodynamically more stable Au10 [2]catenane structure upon dissolving in, or recrystallization from, other solvents such as CH2Cl2, CHCl3, and CH2Cl2/MeCN. The cluster‐to‐cluster transformation process was monitored by 1H NMR and ESI‐MS measurements. Density functional theory (DFT) calculations were performed to provide insight into the mechanism of the “ring‐in‐ring? [2]catenane” interconversions.  相似文献   

20.
Considering the frightening high level of mortality from cancer, studies of anticancer agents are vital nowadays. The 24 thioderivatives of 2‐alkyl(aryl)‐quinazolin‐4(3H)‐thiones and 20 thioderivatives of [1,2,4]triazolo[1,5‐c]quinazoline‐2‐thiones were synthesized and evaluated for preliminary in vitro anticancer activity with subsequent in silico QSAR analysis. The substance 18 had the best results inhibiting growth of eight cancer cell lines: CCRF‐CEM of leukemia; SF‐539, SNB‐75, and U251 of CNS cancer; 786, RXF393, and UO‐31 of renal cancer; and MDA‐MB‐231/ATCC of breast cancer (?31.50 – 47.41% of cell growth) with low procancer effect. Calculated QSAR‐models for CCRF‐CEM of leukemia, T‐47D and HS 578T of breast cancer, and mean cell growth demonstrated good rate of anticancer activity prediction (r2 = 0.7 – 0.8,  = 0.5 – 0.7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号