首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
Two classes of pincer‐type PtII complexes containing tridentate N‐donor ligands ( 1 – 8 ) or C‐deprotonated N^C^N ligands derived from 1,3‐di(2‐pyridyl)benzene ( 10 – 13 ) and auxiliary N‐heterocyclic carbene (NHC) ligand were synthesized. [Pt(trpy)(NHC)]2+ complexes 1 – 5 display green phosphorescence in CH2Cl2 (Φ: 1.1–5.3 %; τ: 0.3–1.0 μs) at room temperature. Moderate‐to‐intense emissions are observed for 1 – 7 in glassy solutions at 77 K and for 1 – 6 in the solid state. The [Pt(N^C^N)(NHC)]+ complexes 10 – 13 display strong green phosphorescence with quantum yields up to 65 % in CHCl3. The reactions of 1 with a wide variety of anions were examined in various solvents. The tridentate N‐donor ligand of 1 undergoes displacement reaction with CN? in protic solvents. Similar displacement of the N^C^N ligand by CN? has been observed for 10 , leading to a luminescence “switch‐off” response. The water‐soluble 7 containing anthracenyl‐functionalized NHC ligand acts as a light “switch‐on” sensor for the detection of CN? ion with high selectivity. The in vitro cytotoxicity of the PtII complexes towards HeLa cells has been evaluated. Complex 12 showed high cytotoxicity with IC50 value of 0.46 μM , whereas 1 – 4 and 6 – 8 are less cytotoxic. The cellular localization of the strongly luminescent complex 12 traced by using emission microscopy revealed that it mainly localizes in the cytoplasmic structures rather than in the nucleus. This complex can induce mitochondria dysfunction and subsequent cell death.  相似文献   

2.
The first enantiopure chiral‐at‐rhenium complexes of the form fac‐ReX(CO)3(:C^N) have been prepared, where :C^N is a helicene‐N‐heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re‐NHC systems.  相似文献   

3.
AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.  相似文献   

4.
Molecular rectangles were obtained from two bis(NHC) ligands, each featuring two terminal coumarin groups and two Ag+, Au+, or Cu+ ions. Upon UV irradiation (λ=365 nm), the dinuclear complexes undergo photochemical modification through a [2+2] cycloaddition reaction of two adjacent coumarin moieties to give a macrocyclic tetra(NHC) ligand. The photodimerization of the coumarin pendants proceeds stereoselectively to give the syn‐head‐head isomers in all cases. Subsequent irradiation at λ=254 nm initiates a photocleavage reaction with reconstitution of the initial dinuclear complexes with coumarin pendants.  相似文献   

5.
Ruthenium(II) π‐coordination onto [28]hexaphyrins(1.1.1.1.1.1) has been accomplished. Reactions of bis‐AuIII and mono‐AuIII complexes of hexakis(pentafluorophenyl) [28]hexaphyrin with [RuCl2(p‐cymene)]2 in the presence of NaOAc gave the corresponding π‐ruthenium complexes, in which the [(p‐cymene)Ru]II fragment sat on the deprotonated side pyrrole. A similar reaction of the bis‐PdII [26]hexaphyrin complex afforded a triple‐decker complex, in which the two [(p‐cymene)Ru]II fragments sat on both sides of the center of the [26]hexaphyrin framework.  相似文献   

6.
For a long time d10‐ML2 fragments have been known for their potential to activate unreactive bonds by oxidative addition. In the development of more active species, two approaches have proven successful: the use of strong σ‐donating ligands leading to electron‐rich metal centers and the employment of chelating ligands resulting in a bent coordination geometry. Combining these two strategies, we synthesized bis‐NHC chelate complexes of nickel(0) and platinum(0). Bis(1,5‐cyclooctadiene)nickel(0) and ‐platinum(0) react with bisimidazolium salts, deprotonated in situ at room temperature, to yield tetrahedral or trigonal‐planar bis‐NHC chelate olefin complexes. The synthesis and characterization of these complexes as well as a first example of C? C bond activation with these systems are reported. Due to the enforced cis arrangement of two NHCs, these compounds should open interesting perspectives for bond‐activation chemistry and catalysis.  相似文献   

7.
《化学:亚洲杂志》2017,12(16):2104-2120
A series of charge‐neutral AuIII complexes, which comprise a dicarbanionic C‐deprotonated biphenyl ligand and bidentate ancillary ligands ([Au(C^C)(L^X)]; L^X=β‐diketonate and relatives (O^O), quinolinolate and relatives (N^O), and diphosphino (P^P) ligands), were prepared. All the complexes are emissive in degassed CH2Cl2 solutions and in thin‐film samples with Φ em up to 18 and 35 %, respectively, except for 5 and 6 , which bear (N^O)‐type ancillary ligands. Variation of the electronic characteristics of the β‐diketonate ancillary ligand was demonstrated to be a viable route for tuning the emission color from blue‐green (peak λ em at ca. 466 nm for 1 and 2 ; 501 nm for 4 a and 4 b ) to orange (peak λ em at 585 nm for 3 ), in contrast to the common observations that the ancillary ligand has a negligible effect on the excited‐state energy of the AuIII complexes reported in the literature. DFT/time‐dependent (TD) DFT calculations revealed that the energies of the 3ππ*(C^C) and the 3ILCT(O^O) excited states (ILCT=intraligand charge transfer) switch in order on going from O^O=acetylacetonate (acac) to aryl‐substituted β‐diketonate ligands. Solution‐processed and vacuum‐deposited organic light‐emitting diode (OLED) devices of selected complexes were prepared. The vacuum‐deposited OLED fabricated with 2 displays a sky‐blue emission with a maximum external quantum efficiency (EQE) of 6.71 % and CIE coordinates of (0.22, 0.40). The crystal structures of 7 and 9 reveal short intermolecular AuIII⋅⋅⋅AuIII contacts, with intermetal distances of 3.408 and 3.453 Å, respectively. DFT/TDDFT calculations were performed on 7 and 9 to account for the noncovalent interactions. Solid samples of 1 , 3 , and 9 exhibit excimeric emission at room temperature, which is rarely reported in AuIII complexes.  相似文献   

8.
The synthesis and structure of the first 1,2‐bis(NHSi)‐substituted ortho‐carborane [(LSi:)C]2B10H10 (termed SiCCSi) is reported (NHSi=N‐heterocyclic silylene; L=PhC(NtBu)2). Its suitability to serve as a reliable bis(silylene) chelating ligand for transition metals is demonstrated by the formation of [SiCCSi]NiBr2 and [SiCCSi]Ni(CO)2 complexes. The CO stretching vibration modes of the latter indicate that the SiII atoms in the SiCCSi ligand are even stronger σ donors than the PIII atoms in phosphines and CII atoms in N‐heterocyclic carbene (NHC) ligands. Moreover, the strong donor character of the [SiCCSi] ligand enables [SiCCSi]NiBr2 to act as an outstanding precatalyst (0.5 mol % loading) in the catalytic aminations of arenes, surpassing the activity of previously known molecular Ni‐based precatalysts (1–10 mol %).  相似文献   

9.
We herein report on new synthetic strategies for the preparation of pyridine and imidazole substituted 2,2’-dihalo biphenyls. These structures are pre-ligands suitable for the preparation of respective stannoles. The latter can successfully be transmetalated to K[AuCl4] forming non-palindromic [(C^C^D)AuIII] pincer complexes featuring a lateral pyridine (D=N) or N-heterocyclic carbene (NHC, D=C’) donor. The latter is the first report on a pincer complex with two formally anionic sp2 and one carbenic carbon donor. The [(C^C^D)AuIII] complexes show intense phosphorescence in solution at room temperature. We discuss the developed multistep strategy and touch upon synthetic challenges. The prepared complexes have been fully characterized including X-ray diffraction analysis. The gold(III) complexes’ photophysical properties have been investigated by absorption and emission spectroscopy as well as quantum chemical calculations on the quasi-relativistic two-component TD-DFT and GW/Bethe–Salpeter level including spin–orbit coupling. Thus, we shed light on the electronic influence of the non-palindromic pincer ligand and reveal non-radiative relaxation pathways of the different ligands employed.  相似文献   

10.
The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris‐ cyclometalated PtIV complexes are reported. The complexes mer‐[Pt(C^N)2(C′^N′)]OTf, with C^N=C‐deprotonated 2‐(2,4‐difluorophenyl)pyridine (dfppy) or 2‐phenylpyridine (ppy), and C′^N′=C‐deprotonated 2‐(2‐thienyl)pyridine (thpy) or 1‐phenylisoquinoline (piq), were obtained by reacting bis‐ cyclometalated precursors [Pt(C^N)2Cl2] with AgOTf (2 equiv) and an excess of the N′^C′H pro‐ligand. The complex mer‐[Pt(dfppy)2(ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long‐lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π–π* energy gap and have very little metal character. DFT and time‐dependent DFT (TD‐DFT) calculations on mer‐[Pt(ppy)2(C′^N′)]+ (C′^N′=thpy, piq) and mer/fac‐[Pt(ppy)3]+ support this assignment and provide a basis for the understanding of the luminescence of tris‐cyclometalated PtIV complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state.  相似文献   

11.
Phosphorescent mono-cyclometalated gold(III) complexes and their possible applications in organic light emitting diodes (OLEDs) can be significantly enhanced with their improved thermal stability by suppressing the reductive elimination of the respective ancillary ligands. A rational tuning of the π-conjugation of the cyclometalating ligand in conjunction with the non-conjugated 5,5′-(1-methylethylidene)bis(3-trifluoromethyl)-1H-pyrazole were used as a strategy to achieve room-temperature phosphorescence emission in a new series of gold(III) complexes. Photophysical studies of the newly synthesised and characterised complexes revealed phosphorescent emission of the complexes at room temperature in solution, thin films when doped in poly(methyl methacrylate) (PMMA) as well as in 2-Me-THF at 77 K. The complexes exhibit highly tuneable emission behaviour with photoluminescent quantum efficiencies up to 22 % and excited state lifetimes in the range of 63–300 μs. Detailed photophysical investigations in combination with DFT and TD-DFT calculations support the conclusion that the emission properties are strongly dictated by both the cyclometalating ligand and the ancillary chelating ligand. Thermogravimetric studies further show that the thermal stability of the AuIII complexes has been drastically enhanced, making these complexes more attractive for OLED applications.  相似文献   

12.
Unprecedented stable BINOL/gold(III) complexes, adopting a novel C,O‐chelation mode, were synthesized by a modular approach through combination of 1,1′‐binaphthalene‐2,2′‐diols (BINOLs) and cyclometalated gold(III) dichloride complexes [(C^N)AuCl2]. X‐ray crystallographic analysis revealed that the bidentate BINOL ligands tautomerized and bonded to the AuIII atom through C,O‐chelation to form a five‐membered ring instead of the conventional O,O′‐chelation giving a seven‐membered ring. These gold(III) complexes catalyzed acetalization/cycloisomerization and carboalkoxylation of ortho ‐alkynylbenzaldehydes with trialkyl orthoformates.  相似文献   

13.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Vinyl polymerized norbornene has some useful properties such as good mechanical strength, optical transparency and heat resistance. Several transition metal complexes have been described in the literature as active catalysts for the vinyl polymerization of norbornene. We now report the use of three types of nickel(II) complexes with N‐heterocyclic carbene (NHC) ligands in the catalytic vinyl polymerization of norbornene under a range of conditions. Specifically, two nickel complexes bearing a chelating bis(NHC) ligand, two nickel complexes bearing two chelating anionic N‐donor functionalized NHC ligands as well as one diiodidonickel(II) complex with two monodentate NHC ligands were tested. The solid‐state structure of bis(1,3‐dimethylimidazol‐2‐ylidene)diiodidonickel(II), as determined by X‐ray crystallography, is presented. The highest polymerization activity of 2.6 × 107 g (mol cat)?1 h?1 was observed using the latter nickel complex as catalyst, activated by methylaluminoxane. The norbornene polymers thus obtained are of high molecular weight but with rather low polydispersity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Aggregation‐induced emission (AIE) provides an efficient strategy to synthesize highly luminescent metal nanoclusters (NCs), however, rational control of emission energy and intensity of metal NCs is still challenging. This communication reveals the impact of surface AuI‐thiolate motifs on the AIE properties of Au NCs, by employing a series of water‐soluble glutathione (GSH)‐coordinated Au complexes and NCs as a model ([Au10SR10], [Au15SR13], [Au18SR14], and [Au25SR18]?, SR=thiolate ligand). Spectroscopic investigations show that the emission wavelength of Au NCs is adjustable from visible to the near‐infrared II (NIR‐II) region by controlling the length of the AuI‐SR motifs on the NC surface. Decreasing the length of AuI‐SR motifs also changes the origin of cluster luminescence from AIE‐type phosphorescence to Au0‐core‐dictated fluorescence. This effect becomes more prominent when the degree of aggregation of Au NCs increases in solution.  相似文献   

16.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

17.
The first enantiopure chiral-at-rhenium complexes of the form fac-ReX(CO)3(:C^N) have been prepared, where :C^N is a helicene-N-heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re-NHC systems.  相似文献   

18.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

19.
5,20‐Dibenzoyl [28]hexaphyrin(1.1.1.1.1.1) was synthesized as the first hexaphyrin bearing meso‐aroyl substituents. The meso‐dibenzoyl substituents are hydrogen‐bonded with the pyrrolic protons to stabilize an antiaromatic dumbbell conformer. Core metalation of this hexaphyrin with AuIII afforded rectangular and aromatic [26]hexaphyrin bis‐AuIII complexes, the major isomer of which was reduced with NaBH4 to give its antiaromatic 28π bis‐AuIII complex. This complex allowed facile peripheral metalation with BIII owing to the peripheral benzoyl substituents.  相似文献   

20.
Photoactive platinum complexes of stoichiometry [Pt(RCCCR)L]0/+ (R=Me, nBu and L=? CN, ? C≡CPh, ? N≡CCH3, ? Py, ? CO) featuring pincer‐type bis N‐heterocyclic carbene (NHC) ligands (RCCCR) were synthesized. Organometallic syntheses of these complexes are facile and achievable through standard laboratory procedures. Control of intermolecular Pt???Pt interaction, π–π stacking, and emission tuning is achieved through suitable choice of the NHC‐wingtip substituent (R) and the auxiliary ligand (L). Exposure to specific volatile organic compounds (VOCs) or mechanical grinding triggers changes in emission colors, which render these complexes photofunctional. Solid‐state structures and photoluminescence results are described herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号