首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Resonant tunneling of electrons through a quantum level in single self-assembled InAs quantum dot (QD) embedded in thin AlAs barriers has been studied. The embedded InAs QDs are sandwiched by 1.7-nm-thick AlAs barriers, and surface InAs QDs, which are deposited on 8.3 nm-thick GaAs cap layer, are used as nano-scale electrodes. Since the surface InAs QD should be vertically aligned with a buried one, a current flowing via the buried QD can be measured with a conductive tip of an atomic force microscope (AFM) brought in contact with the surface QD-electrode. Negative differential resistance attributed to electron resonant tunneling through a quantized energy level in the buried QD is observed in the current–voltage characteristics at room temperature. The effect of Fermi level pinning around nano-scale QD-electrode on resonance voltage and the dependence of resonance voltage on the size of QD-electrodes are investigated, and it has been demonstrated that the distribution of the resonance voltages reflects the size variation of the embedded QDs.  相似文献   

2.
Effectiveness of a Ge fraction modulated spacer in hole resonant tunneling diodes (RTDs) with Si/strained Si1−xGex heterostructures epitaxially grown on Si(1 0 0) was investigated to improve the electrical characteristics at higher temperatures. Electrical characteristics measured for 30 RTDs, with the modulated spacer at higher Ge fraction (x = 0.48) on a single wafer, show that the deviation of the peak current and voltage at the resonant peak falls in ranges of ±25% and ±10%, respectively. For the RTDs, negative differential conductance (NDC) characteristics are obtained even at higher temperatures around 230 K than that for the RTDs with x = 0.42. The result indicates that the introduction of higher Ge fraction is effective for NDC in RTD at higher temperature.  相似文献   

3.
Si quantum dots (QDs) embedded in SiO2 can be normally prepared by thermal annealing of SiOx (x < 2) thin film at 1100 °C in an inert gas atmosphere. In this work, the SiOx thin film was firstly subjected to a rapid irradiation of CO2 laser in a dot by dot scanning mode, a process termed as pre-annealing, and then thermally annealed at 1100 °C for 1 h as usual. The photoluminescence (PL) intensity of Si QD was found to be enhanced after such pre-annealing treatment. This PL enhancement is not due to the additional thermal budget offered by laser for phase separation, but attributed to the production of extra nucleation sites for Si dots within SiOx by laser irradiation, which facilitates the formation of extra Si QDs during the subsequent thermal annealing.  相似文献   

4.
The binding energy Eb of the acceptor-exciton complex (A,X) as a function of the radius (or of the impurity position of the acceptor) and the normalized oscillator strength of (A,X) in spherical ZnO quantum dots (QDs) embedded in a SiO2 matrix are calculated using the effective-mass approximation under the diagonalzation matrix technique, including a three-dimensional confinement of the carrier in the QD and assuming a finite depth. Numerical results show that the binding energy of the acceptor-exciton complexes is particularly robust when the impurity position of the acceptor is in the center of the ZnO QDs. It has been clearly shown from our calculations that these physical parameters are very sensitive to the quantum dot size and to the impurity position. These results could be particularly helpful, since they are closely related to experiments performed on such nanoparticles. This may allow us to improve the stability and efficiency of the semiconductor quantum dot luminescence which is considered critical.  相似文献   

5.
Germanium quantum dots (QDs) were extracted from ultrathin SixGe1−x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0 V. The tunneling current dependence of the extraction efficiency was explained by the electric field evaporation transfer mechanism for positive Ge ions from QDs to STM tips. Ge QDs (∼7 nm) were formed and isolated spatially by extracting the surrounding Ge QDs with an ultrahigh density of >1012 cm−2. Scanning tunneling spectroscopy of the spatially-isolated QDs revealed that QDs with an ultrahigh density are electrically-isolated from the adjacent dots.  相似文献   

6.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

7.
《Current Applied Physics》2018,18(2):267-271
We report resonant Raman scattering results of CdTe/ZnTe self-assembled quantum dot (QD) structures. Photoluminescence spectra reveal that the band gap energies of the CdTe QDs decrease with the increase of CdTe thickness from 2.0 to 3.5 monolayers, which indicates that the size of the QDs increases. When the CdTe/ZnTe QD structures are excited by non-resonant excitation, a longitudinal optical (LO) phonon response from the ZnTe barrier material is observed at 206 cm−1. In contrast, when the CdTe/ZnTe QD structures are resonantly excited near the band gap energy of the QDs, additional phonon modes emerge at 167 and 200 cm−1, while the ZnTe LO phonon response completely disappears. The 167 cm−1 mode corresponds to the LO phonon of the CdTe QDs. A spatially resolved Raman scattering from the cleaved edge of the QD sample reveals that the 200 cm−1 mode is strongly localized at the interface between the CdTe QDs and ZnTe cap layer. This phonon mode is attributed to the interface optical (IO) phonon. The analytically calculated value of the IO phonon energy using a dielectric continuum approach, assuming a spherical dot boundary, agrees well with the experimental value.  相似文献   

8.
A CaF2/Ge/CaF2/Si(111) heteroepitaxial structure with Ge quantum dots was grown by molecular-beam epitaxy. A negative differential conductivity and conductivity oscillations caused by resonant hole tunneling were observed at room temperature. The energy spacing between the levels in quantum dots, as determined from the oscillation period, is 40–50 meV depending on the Ge dot size.  相似文献   

9.
李天信  翁钱春  鹿建  夏辉  安正华  陈张海  陈平平  陆卫 《物理学报》2018,67(22):227301-227301
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.  相似文献   

10.
In this contribution we study the intravalence band photoexcitation of holes from self-assembled Ge quantum dots (QDs) in Si followed by spatial carrier transfer into SiGe quantum well (QW) channels located close to the Ge dot layers. The structures show maximum response in the important wavelength range 3–5 μm. The influence of the SiGe hole channel on photo- and dark current is studied depending on temperature and the spatial separation of QWs and dot layers. Introduction of the SiGe channel in the active region of the structure increases the photoresponsivity by up to about two orders of magnitude to values of 90 mA/W at T=20 K. The highest response values are obtained for structures with small layer separation (10 nm) that enable efficient transfer of photoexcited holes from QD to QW layers. The results indicate that Si/Ge QD structures with lateral photodetection promise very sensitive large area mid-infrared photodetectors with integrated readout microelectronics in Si technology.  相似文献   

11.
A dual-band (two-color) tunneling-quantum dot infrared photodetector (T-QDIP) structure, which provides wavelength selectivity using bias voltage polarity, is reported. In this T-QDIP, photoexcitation takes place in InGaAs QDs and the excited carriers tunnel through an AlGaAs/InGaAs/AlGaAs double-barrier by means of resonant tunneling when the bias voltage required to line up the QD excited state and the double-barrier state is applied. Two double-barriers incorporated on the top and bottom sides of the QDs provide tunneling conditions for the second and the first excited state in the QDs (one double-barrier for each QD excited state) under forward and reverse bias, respectively. This field dependent tunneling for excited carriers in the T-QDIP is the basis for the operating wavelength selection. Experimental results showed that the T-QDIP exhibits three response peaks at ~4.5 (or 4.9), 9.5, and 16.9 μm and selection of either the 9.5 or the 16.9 μm peak is obtained by the bias polarity. The peak detectivity (at 9.5 and 16.9 μm) of this detector is in the range of 1.0–6.0 × 1012 Jones at 50 K. This detector does not provide a zero spectral crosstalk due to the peak at 4.5 μm not being bias-selectable. To overcome this, a quantum dot super-lattice infrared photodetector (SL-QDIP), which provides complete bias-selectability of the response peaks, is presented. The active region consists of two quantum dot super-lattices separated by a graded barrier, enabling photocurrent generation only in one super-lattice for a given bias polarity. According to theoretical predictions, a combined response due to three peaks at 2.9, 3.7, and 4.2 μm is expected for reverse bias, while a combined response of three peaks at 5.1, 7.8, and 10.5 μm is expected for forward bias.  相似文献   

12.
Electrical characteristics of silicon Schottky diodes containing Ge quantum dot (QD) arrays are investigated. It has been found that the potential barrier height at the metal-semiconductor contact can be controlled by introducing dense QD layers, which is a consequence of the formation of a planar electrostatic potential of charged QDs. When the applied voltage is varied, the ideality factors of Schottky barriers exhibit oscillations due to the tunneling of holes through discrete levels in quantum dots.  相似文献   

13.
The luminescence properties of double Ge/Si quantum dot structures are studied at liquid helium temperature depending on the Si spacer thickness d in QD molecules. A seven-fold increase in the integrated photoluminescence intensity is obtained for the structures with optimal thickness d = 2 nm. This enhancement is explained by increasing the overlap integral of electron and hole wavefunctions. Two main factors promote this increasing. The first one is that the electrons are localized at the QD base edges and their wavefunctions are the linear combinations of the states of in-plane Δ valleys, which are perpendicular in k-space to the growth direction [001]. This results in the increasing probability of electron penetration into Ge barriers. The second factor is the arrangement of Ge nanoclusters in closely spaced QD groups. The strong tunnel coupling of QDs within these groups increases the probability of hole finding at the QD base edge, that also promotes the increase in the radiative recombination probability.  相似文献   

14.
The photoluminescence (PL) inhomogeneity has been studied in InAs quantum dots (QDs) embedded in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with QDs grown at different temperatures. It was shown that three reasons are responsible for the emission inhomogeneity in studied QD structures: (i) the high concentration of nonradiative recombination centers in the capping In0.15Ga0.85As layer at low QD growth temperatures, (ii) the QD density and size distributions for the structure with QD grown at 510 °C, (iii) the high concentration of nonradiative recombination centers in the GaAs barrier at higher QD growth temperatures.  相似文献   

15.
We fabricated quantum dot (QD) structures at ultrahigh growth rates. Smaller fluctuations in QD size were observed when they were grown at a rate of 1.0 ML/s under conventional growth conditions (growth temperature of 500 °C and As4 flux of 9×10−6 Torr). For QDs grown at high rates, growth interruption played an important role in the fabrication of QD structures; this was confirmed by carrying out reflection high-energy electron diffraction. Photoluminescence for QDs grown at high and low growth rates, with growth interruption and with low-temperature capping was observed at around 1250 nm at room temperature, indicating that high-quality QDs can be fabricated by employing high growth rates.  相似文献   

16.
Brooke A. Timp  X.-Y. Zhu 《Surface science》2010,604(17-18):1335-1341
A number of solar energy conversion strategies depend on exciton dissociation across interfaces between semiconductor quantum dots (QDs) and other electron or hole conducting materials. A critical factor governing exciton dissociation and charge transfer in these systems is the alignment of electronic energy levels across the interface. We probe interfacial electronic energy alignment in a model system, sub-monolayer films of PbSe QDs adsorbed on single crystal ZnO(101?0) surfaces using ultraviolet photoemission spectroscopy. We establish electronic energy alignment as a function of quantum dot size and surface chemistry. We find that replacing insulating oleic-acid capping molecules on the QDs by the short hydrazine or ethanedithiol molecules results in pinning of the valence band maximum (VBM) of QDs to ZnO substrate states, independent of QD size. This is in contrast to similar measurements on TiO2(110) where the alignment of the PbSe QD VBM to that of the TiO2 substrate depends on QD size. We interpret these findings as indicative of strong electronic coupling of QDs with the ZnO surface but less with the TiO2 surface. Based on the measured energy alignment, we predict that electron injection from the 1se level in photo-excited PbSe QDs to ZnO can occur with small QDs (diameter ? = 3.4 nm), but energetically unfavorably for larger dots (? = 6.7 nm). In the latter, hot electrons above the 1se level are necessary for interfacial electron injection.  相似文献   

17.
Quantum dot‐sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next‐generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. To understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO2 substrate are simulated using a rigorous ab initio density functional method. This method capitalizes on localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO2 occurring via the strong bonding between the conduction bands of QDs and TiO2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.  相似文献   

18.
We fabricated multiple stacked self-organized InGaAs quantum dots (QDs) on GaAs (3 1 1)B substrate by atomic hydrogen-assisted molecular beam epitaxy (H-MBE) to realize an ordered three-dimensional QD array. High quality stacked QDs with good size uniformity were achieved by using strain-compensation growth technique, in which each In0.35Ga0.65As QD layer was embedded by GaNAs strain-compensation layer (SCL). In order to investigate the effect of spacer layer thickness on vertical alignment of InGaAs/GaNAs QDs, the thickness of GaNAs SCL was varied from 40 to 20 nm. We observed that QDs were vertically aligned in [3 1 1] direction when viewed along [0 1 −1], while the alignment was inclined when viewed along [−2 3 3] for all samples with different SCL thickness. This is due to their asymmetric shape along [−2 3 3] with two different dominant facets thereby the local strain field around QD extends further outward from the lower-angle facet. Furthermore, the inclination angle of vertical alignment QDs became monotonously smaller from 22° to 2° with decreasing SCL thickness from 40 to 20 nm. These results suggest that the strain field extends asymmetrically resulting in vertically tilted alignment of QDs for samples with thick SCLs, while the propagated local strain field is strong enough to generate the nucleation site of QD formation just above lower QD in the sample with thinner SCLs.  相似文献   

19.
We report the fabrication of Si quantum dots (QDs)/SiO2 multilayers by using KrF excimer laser (248 nm) crystallization of amorphous Si/SiO2 multilayered structures on ITO coated glass substrates. Raman spectra and transmission electron microscopy demonstrate the formation of Si QDs and the size can be controlled as small as 1.8 nm. After laser crystallization, Al electrode is evaporated to obtain light emitting devices and the room temperature electroluminescence (EL) can be detected with applying the DC voltage above 8 V on the top gate electrode. The luminescent intensity increases with increasing the applied voltage and the micro-watt light output is achieved. The EL behaviors for samples with different Si dot sizes are studied and it is found that the corresponding external quantum efficiency is significantly enhanced in sample with ultra-small sized Si QDs.  相似文献   

20.
In this paper, three pin GaAs solar cells were grown and characterized, one with InAs quantum dot (QD) layers embedded in the depletion region (sample A), one with QD layers embedded in the n base region (B), and the third without QDs (control sample C). QD-embedded solar cells (samples A and B) show broad photoluminescence spectra due to QD multi-level emissions but have lower open-circuit voltages V oc and lower photovoltaic (PV) efficiencies than sample C. On the other hand, the short-circuit current density J sc in sample A is increased while it is decreased in sample B. Theoretical analysis shows that in sample B where the built-in electric field in QDs is zero, electrons tend to occupy QDs and strong potential variations exist around QDs which deteriorate the electron mobility in the n base region so that J sc in sample B is decreased. Hole trapping and electron–hole recombination in QDs are also enhanced in sample B, resulting in a reduced V oc and thus a worse PV effect. In sample A, a strong built-in field exists in QD layers, which facilitates photo-carrier extraction from QDs and thus J sc is increased. However, QDs in the depletion region in sample A act also as recombination-generation centers so that the dark saturated current density is drastically increased, which reduces V oc and the total PV effect. In conclusion, a nonzero built-in electric field around QDs is vital for using QDs to increase the PV effect in conventional pin GaAs solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号