首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
We investigated the effect of GaNAs strain-compensating layers (SCLs) on the properties of InAs self-assembled quantum dots (QDs) grown on GaAs (0 0 1) substrates. The GaNAs material can be used as SCL thereby minimizing the net strain, and thus is advantageous for multi-stacking of InAs QDs structures and achieving long wavelength emission. The emission wavelength of InAs QDs can be tuned by changing the nitrogen (N) composition in GaNAs SCLs due to both effects of strain compensation and lowering of potential barrier height. A photoluminescence emission at 77 K was clearly observed for sample with GaN0.024As0.976 SCL. Further, we observed an improvement of optical properties of InAs QDs by replacing the more popular GaAs embedding layers with GaNAs SCLs, which is a result of decreasing non-radiative defects owing to minimizing the total net strain.  相似文献   

2.
Recent work has shown that site-controlled dots (QD) grown on (1 1 1)B GaAs substrates, pre-patterned with tetrahedral pyramidal recesses (Baier et al., 2006) [1], (Pelucchi et al., 2007) [2], (Zhu et al., 2007) [3] are suitable for the generation of single and entangled photons (Young et al., 2009) [4]. We recently introduced InGaAs/GaAs site controlled QD structures which demonstrated record breaking spectral purity, and we showed that increasing the indium concentration of the active region allows easy tunability of the emission wavelength (Mereni et al., 2009) [5], [6]. We present here the first theoretical analysis of the emission energies and optical properties of this system as a function of QD height and In concentration. We model the dots using an 8 band k.p theory chosen to provide the best convergence and performance for structures oriented specifically along the (1 1 1) crystallographic direction.  相似文献   

3.
《Applied Surface Science》2001,169(1-2):92-98
Self-assembled In0.4Ga0.6As island arrays have been grown on (3 1 1)B GaAs substrates by using atomic hydrogen-assisted molecular beam epitaxy (H-MBE). The evolution process of surface morphology with deposition has been analyzed by atomic force microscopy (AFM) and the development of lateral ordering has been highlighted by two-dimensional fast Fourier transformation (2DFFT) analysis of the AFM images. It is revealed that the InGaAs islands are arranged in nearly perfect two-dimensional (2D) square-like lattice with two sides parallel to [0 1 −1] and [−2 3 3] azimuths. Such an alignment of islands is coincident with the anisotropy of bulk elastic modulus of the GaAs (3 1 1)B substrate.  相似文献   

4.
Brooke A. Timp  X.-Y. Zhu 《Surface science》2010,604(17-18):1335-1341
A number of solar energy conversion strategies depend on exciton dissociation across interfaces between semiconductor quantum dots (QDs) and other electron or hole conducting materials. A critical factor governing exciton dissociation and charge transfer in these systems is the alignment of electronic energy levels across the interface. We probe interfacial electronic energy alignment in a model system, sub-monolayer films of PbSe QDs adsorbed on single crystal ZnO(101?0) surfaces using ultraviolet photoemission spectroscopy. We establish electronic energy alignment as a function of quantum dot size and surface chemistry. We find that replacing insulating oleic-acid capping molecules on the QDs by the short hydrazine or ethanedithiol molecules results in pinning of the valence band maximum (VBM) of QDs to ZnO substrate states, independent of QD size. This is in contrast to similar measurements on TiO2(110) where the alignment of the PbSe QD VBM to that of the TiO2 substrate depends on QD size. We interpret these findings as indicative of strong electronic coupling of QDs with the ZnO surface but less with the TiO2 surface. Based on the measured energy alignment, we predict that electron injection from the 1se level in photo-excited PbSe QDs to ZnO can occur with small QDs (diameter ? = 3.4 nm), but energetically unfavorably for larger dots (? = 6.7 nm). In the latter, hot electrons above the 1se level are necessary for interfacial electron injection.  相似文献   

5.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

6.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

7.
It has been recently shown that Co can grow epitaxially on an Au(1 1 1) layer with a face centered cubic (FCC) structure, the Co[1 1 1] and Au[1 1 1] axes being oriented along each other. First magneto-optical studies of the FCC Co film structure are reported here. The differences in magnetic behavior for FCC and HCP-type Co films as a function of the layer thickness are underlined and interpreted in the framework of a phenomenological model.  相似文献   

8.
《Applied Surface Science》2005,239(3-4):451-457
Well-ordered ultra-thin Al2O3 films were grown on NiAl (1 1 0) surface by exposing the sample at various oxygen absorption temperatures ranging from 570 to 1100 K at dose rates 6.6 × 10−5 and 6.6 × 10−6 Pa. From the results of low-energy electron diffraction (LEED), Auger electron spectrometer (AES) and X-ray photon spectroscopy (XPS) observations, it was revealed that oxidation mechanism above 770 K is different from well-known two-step process. At high temperature, oxidation and crystallization occurred simultaneously while in two-step process oxidation and crystallization occurred one after another. At high-temperature oxidation well-ordered crystalline oxide can be formed by a single-step without annealing. Well-ordered Al2O3 layer with thickness over 1 nm was obtained in oxygen absorption temperature 1070 K and a dose rate 6.6 × 10−6 Pa at 1200 L oxygen.  相似文献   

9.
We have investigated the effect of strain compensation on the structural and optical properties of multiple stacked InAs quantum dots (QDs) on GaAs (0 0 1) substrates grown by atomic hydrogen-assisted RF-MBE. Strain relaxation was not observed from the reciprocal space mapping, and as a result, dislocations and coalesced islands were not observed in 50 layer-stacked QDs. Thus, the total QD density of as high as 2.5×1012 cm−2 was achieved. For QD solar cell characterization, the short-circuit current density increased from 21.0 to 26.4 mA/cm2 as the number of stacks was increased from 20 to 50. Further increase of stacks did not affect the open-circuit voltage of ∼0.7 V and diode factor of ∼1.6, which implies that high crystalline quality was maintained even after 50 layers of stacking.  相似文献   

10.
The magnetic properties of epitaxial iron films up to 80 monolayers (ML) thickness grown on Si(0 0 1) by using a template technique were investigated by means of superconducting quantum interference device and magneto-optic Kerr effect techniques. The thinnest films investigated (∼3 ML) exhibit a composition close to Fe3Si with a Curie temperature below room temperature (RT) and strong out-of-plane remanent magnetization that reflects the presence of a dominant second order surface anisotropy term. Thicker films (⩾4 ML) are ferromagnetic at RT with remanent magnetization in film-plane and a composition closer to pure Fe with typically 8–10% silicon content. When deposited at normal incidence such films show simple in-plane fourfold anisotropy without uniaxial contribution. The relevant fourth-order effective anisotropy constant K4eff was measured versus film thickness and found to change its sign near 18 ML. The origin of this remarkable behavior is investigated by means of a Néel model and mainly traced back to fourth-order surface anisotropy and magneto-elastic effects related to the large biaxial in-plane compressive strain up to 3.5% in the thinnest (⩽25 ML) films.  相似文献   

11.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

12.
We have investigated the optical properties of InAs/GaAs (1 1 3)A quantum dots grown by molecular beam epitaxy (MBE) with different growth rates by photoluminescence spectroscopy (PL) as a function of the excitation density and the sample temperature (10–300 K). Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A redshift of the InAs QDs PL band emission was observed when the growth rate was increased. This result was explained by the increase of the InAs quantum dot size with increasing growth rate. A significant redshift was observed when the arsenic flux was decreased. The evolution of the PL peak energy with increasing temperature has showed an S-shaped form due to the localization effects and is attributed to the efficient relaxation process of carriers in different InAs quantum dots and to the exciton transfer localized at the wetting layer.  相似文献   

13.
Few-layer graphene (FLG) was grown on Al2O3 (0 0 0 1) substrates at different temperatures via direct carbon atoms deposition by using solid source molecular beam epitaxy (SSMBE) method. The structural properties were characterized by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine-structure (NEXAFS). The results showed that the FLG started to form at the substrate temperature of 700 °C. When the substrate temperature increased to 1300 °C, the quality of the FLG was the best and the layer number was estimated to be less than 5. At higher substrate temperature (1400 °C or above), the crystalline quality of the FLG would be deteriorated. Our experiment results demonstrated that the substrate temperature played an important role on the FLG layer formation on Al2O3 (0 0 0 1) substrates and the related growth mechanism was briefly discussed.  相似文献   

14.
宋鑫  冯淏  刘玉敏  俞重远  刘建涛 《中国物理 B》2013,22(1):17304-017304
The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxial strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs’ growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.  相似文献   

15.
The magnetic properties and structures of CoPt15 nm/Ag0−100 nm films deposited by DC magnetron sputtering on glass substrates have been studied. The (0 0 1) texturing was improved by introducing an Ag underlayer. As the Ag underlayer thickness was 100 nm, a nearly perfect (0 0 1)-textured CoPt film was obtained.  相似文献   

16.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

17.
By performing density functional theory calculations, this work clarifies the sites and energetics of both the non-dissociative and dissociated adsorptions of CH3SH on clean Au(1 1 1) and Au(1 1 1) with intrinsic defects. It was found that the adsorption on defect-free Au(1 1 1) is most stable for non-dissociative CH3SH. Its direct molecular dissociation to form CH3S/Au and H/Au is barred by an activation barrier of 0.9 eV. However, the presence of neighboring Auad can assist the dissociation reaction to form CH3S–Auad–H by lowering the energy barrier to 0.6 eV. As for the dissociated CH3S, the surface geometry of two CH3S joined by a Auad is the most favorable one.  相似文献   

18.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

19.
We have used Auger and electron energy loss spectroscopy to study the effect of temperature on InGaAs and InPO4 grown on InP. The thickness of InPO4 is of about 10 Å whereas that of InGaAs is of about 800 Å. InPO4 is of great interest because it protects InP from loss of stoichiometry when heated to 450 °C. The InGaAs system heated at 450 °C seems to be unstable; metallic indium appears on the surface in conjunction with formation of GaAs.  相似文献   

20.
LWIR InAs/Al0.3Ga0.7As/In0.15Ga0.85As confinement-enhanced DWELL (CE-DWELL) QDIPs with operation temperatures higher than 200 K are reported. A thin Al0.3Ga0.7As barrier layer was inserted above the InAs QDs to improve the confinement of QD states in the In0.15Ga0.85As DWELL structure and the device performance. The better confinement of the electronic states increases the oscillator strength of the infrared absorption. The higher excited state energy also improves the escape probability of the photoelectrons. Compared with the conventional DWELL QDIPs, the quantum efficiency increases for more than 20 times and the detectivity is an order of magnitude higher at 77 K. With better device parameters of CE-DWELL, it is possible to achieve high quantum efficiency, high operating temperature and long wavelength detection at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号