首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀技术制备了Ce0.35Zr0.55La0.10O1.95固溶体, 其织构和结构性能以及氧化还原性能分别采用BET、XRD和程序升温(TP)技术进行了表征. 制备了低贵金属Pt-Rh型三效催化剂, 考察了Ce0.35Zr0.55La0.10O1.95对催化剂性能的影响. XRD和BET的结果表明, 经600 ℃焙烧5 h后, Ce0.35Zr0.55La0.10O1.95具有与Ce0.50Zr0.50O2相似的立方结构和高的比表面积;经1000 ℃焙烧5 h后, 仍能保持稳定的立方结构和47.25 m2•g−1的比表面积, 表现出优越的织构性能和高的热稳定性. H2-TPR和O2-TPO的结果表明, Ce0.35Zr0.55La0.10O1.95具有比Ce0.50Zr0.50O2更好的氧化还原性能. 和含Ce0.50Zr0.50O2的催化剂相比, 含Ce0.35Zr0.55La0.10O1.95的催化剂具有较宽的工作窗口, 优越的低温起燃性能, 较强的水气变换能力;催化剂经1000 ℃高温水热老化5 h后, 仍具有良好的催化活性, 表现出了优异的抗老化性能.  相似文献   

2.
The oxidative coupling of methane (OCM) is an attractive route to convert natural gas directly into value-added chemical products (C2+). This work comparatively investigated SiO2- or La2O3-supported Na2WO4-MnxOy (denoted as NWM) catalysts in powder and fiber forms. The powder catalysts were prepared using a co-impregnation method and the fiber catalysts were prepared successfully using an electrospinning technique. The NWM/La2O3 fiber catalysts were activated at low temperature (500 °C) and had a 4.7% C2+ yield, with the maximum C2+ yield of 9.6% at 650 °C, while the NWM/SiO2 fiber catalyst was activated at 650 °C and had a maximum C2+ yield of 20.4% at 700 °C. The XPS results in the O 1s region indicated that NWM/La2O3 had a lower binding energy than NWM/SiO2, suggesting that the lattice oxygen species is easily released from the catalyst surface and creates vacancy sites that enhance performance. The stability test of the catalysts indicated that the La2O3-containing catalysts had excellent activity and high thermal stability, while the SiO2-containing catalysts had a higher C2+ yield when the prepared catalysts were compared at 700 °C. Considering the same component catalysts, the fiber catalysts achieved higher performance because their heat and mass transfer properties were enhanced.  相似文献   

3.
《Acta Physico》2007,23(1):73-78
Ce0.35Zr0.55La0.10O1.95 solid solution was prepared by coprecipitation technique and characterized by specific surface area measurements (BET), X-ray diffraction (XRD), and temperature-programmed (TP) technique. Ce0.35Zr0.55La0.10O1.95 was used to prepare low Pt-Rh three-way catalyst (TWC) and its influence on the performance of TWC was investigated. The results showed that Ce0.35Zr0.55La0.10O1.95 had a cubic structure similar to Ce0.50Zr0.50O2 and a large specific area after calcined at 600 °C for 5 h. Furthermore, after being aged at 1000 °C for 5 h, Ce0.35Zr0.55La0.10O1.95 still maintained a stable cubic structure and a specific surface area of 47.25 m2·g−1. The results of H2-TPR and O2-TPO indicated that Ce0.35Zr0.55La0.10O1.95 had good redox properties. The catalyst containing Ce0.35Zr0.55La0.10O1.95 possessed a fairly wide range of three-way working-windows, good low-temperature light-off properties, and better ability of water-gas shift. Being hydrothermally aged at 1000 °C, the catalyst containing Ce0.35Zr0.55La0.10O1.95 still showed good catalytic activity in comparison with Ce0.50Zr0.50O2 TWC, which indicated that Ce0.35Zr0.55La0.10O1.95 improved the anti-aging properties of the catalyst.  相似文献   

4.
铈锆氧化物固溶体对全钯三效催化剂性能的影响   总被引:23,自引:0,他引:23  
铈锆氧化物固溶体对全钯三效催化剂性能的影响  相似文献   

5.
A high‐surface‐area boehmite was used as the support for a series of vanadium phosphate catalysts. The catalysts were prepared by heating of V2O5 in an isobutyl alcohol and benzyl alcohol mixture at 140°C for 5 h to reduce V5+ to more active V4+ in the presence of phosphoric acid. Then a series of catalysts with various VPO loadings on boehmite were synthesized. The catalysts were characterized using various techniques. The catalysts were utilized for extraction combined with catalytic oxidation of dibenzothiophene. The important factors influencing the desulfurization process, including reaction time, temperature, H2O2, catalyst loading, catalyst amount and solvents, were systematically investigated. Under the optimized reaction conditions, i.e. 30 mg of catalyst loading at 50°C and in 60 min, sulfur removal reached 94%. The catalyst was recycled and reused five times.  相似文献   

6.
In this study, COx-free hydrogen production via methane decomposition was studied over Cu–Zn-promoted tri-metallic Ni–Co–Al catalysts. The catalysts have been prepared by the constant pH co-precipitation method, and the nominal Ni metal loading was fixed at 50 wt % along with other metals at 10 wt% each. The catalyst activity for methane decomposition reaction was examined in a reactor between 400 °C and 700 °C and at atmospheric pressure. Different techniques such as N2-physisorption, X-ray diffraction, H2-TPR SEM, TEM, ICP-MS, TGA, and Raman spectroscopy were applied to characterize the catalysts. The relation between the catalyst composition and their catalytic activity has been investigated. The controlled synthesis has resulted in a series of catalysts with a high surface area. Ni–Co–Cu–Zn–Al was the most active and productive catalyst. Various characterizations indicate that the promotional effects of Cu–Zn interaction were the critical factor in catalysts' activity and stability. Ni–Co–Cu–Zn catalyst gave the highest methane conversion of 85% at 700 °C. Zn addition improves the stability of the catalyst by retaining the active metal size during the decomposition reaction. The catalyst was active for 80 h of stability study. The rapid deactivation of the Ni–Co catalyst was due to the sintering of the catalyst at 650 °C. Moreover, carbon species accumulated during the methane decomposition reaction depend on the catalysts' composition. Zn promotes the growth of reasonably long and thin carbon nanotubes, whereas the diameter of carbon nanotubes on unpromoted catalysts was large.  相似文献   

7.
A number of catalysts were prepared for the desulphurization process of tail gases. Their carrier was alumina oxide while the active phase was manganese. The catalysts were being tested in an lab apparatus. The effect of calcination temperature and process temperature of model gas (1 vol% of SO2+99 vol% of N2) were studied. The increase in the desulphurization temperature up to about 500°C causes the efficiency of the desulphurizing yield to be increased, a further increase of the temperature process decreases the SO2 conversion. The DTA curves of catalysts after the desulphurizing process display the additional peak at a temperature of about 900°C being, perhaps, responsible for deactivation of the catalysts.  相似文献   

8.
The kinetic characteristics of CO, HC and NOx reaction on different kinds of three way catalysts (TWC) has been investigated by using a fixed bed reactor. It was concluded that the three-way reaction on noble metal catalysts is controlled by internal diffusion at high space velocity 16×104 h–1. On non-noble metal catalysts internal diffusion control prevails at space velocities (S.V.) <4×104 h–1 and kinetic control occurs at S.V.> 4×104 h–1. On non-noble metal catalysts containing a small amount of a noble metal, the kinetic control region of the three-way reaction shifts to higher space velocity.  相似文献   

9.
Carbon deposition via coke formation is one of the critical problems causing catalyst deactivation during the reforming of hydrocarbons. An effort was made to regenerate the catalyst (Ni/γ-alumina) by oxidation methods. Two approaches were carried out for the regeneration of the deactivated catalyst. The first one involves the plasma treatment of the deactivated catalyst in the presence of dry air over a temperature range of 300~500 °C, while the second one only the thermal treatment in the same temperature range. The performance of the regenerated catalyst was evaluated in terms of C4H10 and CO2 conversions and the physicochemical characteristics were examined using a surface area analyzer, an elemental analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was observed that the carbon deposit (coke) on the catalyst was about 9.89 wt% after reforming C4H10 for 5 h at 540 °C. The simple thermal treatment at 400 °C reduced carbon content to 6.59 wt% whereas it was decreased to 3.25 wt% by the plasma and heat combination. The specific surface area was fully restored to the original state by the plasma-assisted regeneration at 500 °C. As far as the catalytic activity is concerned, the fresh and regenerated catalysts exhibited similar C4H10 and CO2 conversion efficiencies.  相似文献   

10.
《Mendeleev Communications》2023,33(3):422-424
The oxidative dehydrogenation of ethane into ethylene using CO2 as an oxidant at temperatures of 650–750 °C was carried out over Fe/C, Cr/C and Fe–Cr/C catalysts deposited on a carbon support. Before and after the reaction the catalysts were investigated by X-ray powder diffraction (XRD), in situ magnetometry and transmission electron microscopy methods. The correlation between activity of Fe/C, Cr/C and Fe–Cr/C catalytic systems and their phase composition was established.  相似文献   

11.
近年来,随着大气环境污染问题日益严重,汽车尾气排放受到政府越来越严苛的控制.柴油车排气成分主要包括碳氢化合物(HC)、一氧化碳(CO)、氮氧化物(NOx)、微粒(PM)和二氧化硫(SO2),因此常用的尾气后处理系统有颗粒捕获器(DPF)、氧化型催化转换器(DOC)以及NOx选择还原系统(SCR),在处理尾气时三者联合使用.其中柴油机氧化型催化剂(DOC)是汽车尾气后处理装置的重要组成部分,主要用于氧化CO,HC和NO,可以将CO和HC氧化成无害的CO2和H2O,将NO氧化成NO2,为后续SCR反应提供条件.柴油机排气温度一般较低(150?400°C),特别是在冷启动阶段,排气温度可降低到100°C左右,要求催化剂具有良好的低温催化活性.此外,由于柴油中存在少量含硫有机化合物,经过燃烧分解,使得柴油机尾气中含有少量SO2,对催化剂又有钝化作用,因此催化剂的抗硫性也是需要关注的重点.本文采用浸渍法制备Pt/Ce-Zr-SO42?催化剂,考察了催化剂载体硫酸化以及Pt和H2SO4的负载顺序对催化剂催化氧化C3H6和CO的活性及抗硫性的影响,并且对Pt/Ce-Zr-SO42?催化剂进行了一系列表征,探究其物理化学性质.结果表明,SO42?的添加能有效提高催化剂活性.Pt/CZ-10S对C3H6和CO的T90(转化率为90%时的温度)相较于Pt/CZ催化剂降低了约75°C,另外,Pt/CZ-10S催化剂也表现出较好的抗硫稳定性,在含硫尾气中240°C反应20 h后,其对C3H6和CO的转化率仍保持在95%以上.CO-TPD和XPS分析结果显示,Ce-Zr-SO42?载体上Pt的分散度增加,增加的Pt颗粒可以产生更多新的活性位点(Pt&+-(SO42?)&?couples),从而表现出优异的催化活性.此外,硫酸化后催化剂表面酸性的变化也是其抗硫性能提高的原因.  相似文献   

12.
《Mendeleev Communications》2022,32(5):672-674
Supported bimetallic Cu–Fe catalysts revealed high activity and selectivity in isoprenyl acetate hydrogenation to isoprenol under mild reaction conditions (2 MPa H2 and 170 °C). The nature of the carrier has a significant impact on the catalytic properties of Cu–Fe catalysts. The best catalytic properties were found for the 5% Cu–5% Fe/Al2O3 bimetallic catalyst, which provides a 98% isoprenyl acetate conversion in 4 h with the isoprenol selectivity of 82%.  相似文献   

13.
The catalytic combustion of benzene over SBA-15-supported copper oxide has been investigated. The SBA-15-supported copper oxide catalysts have been prepared by the precipitation-deposition method, and characterized by XRD, BET and TPR. In the CuO/SBA-15 catalysts, the catalytic activity increases with increasing copper oxide loading ratio. Metallic Cu is much more active than copper oxides. When the reduction temperature increases to 500°C the benzene conversion increases until the maximum vlaue is obtained. Further increase in the reduction temperature to 600°C results in a decrease of benzene conversion.  相似文献   

14.
Heterogeneous palladium catalysts anchored on functionalized silica were prepared by sol–gel methods and their catalytic properties for the oxidative carbonylation of phenol to diphenyl carbonate (DPC) were investigated. The catalysts were characterized by means of IR, XPS, EA and BET. The Pd loading in the heterogeneous catalysts and leaching in solution were detected by atomic absorption. The effects of different reaction parameters such as temperature, solvent and inorganic cocatalyst on the yield of DPC and Pd leaching were also studied. It was found that Cu2O and tetrahydrofuran (THF) were the best partners with these heterogeneous catalysts. In the presence of 3 Å molecular sieves as dehydrating agent, the heterogeneous palladium catalyst prepared from 2‐acylpyridine revealed excellent catalytic performance and stability at 110 °C for 5 h, giving 13.7% yield of DPC based on phenol and 4.0% Pd loss in solution. The heterogeneous catalyst was more active and stable compared with traditional supported Pd? C catalyst under the same reaction conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Polysulfonates with reactive pendant chloromethyl groups were synthesized by polyadditions of bisepoxides with disulfonyl chlorides. The polyaddition of bisphenol A diglycidyl ether (BPGE) with m-benzene disulfonyl chloride (m-BDSC) occurred in anisole without any catalyst at 130°C for 24 h. However, polymer with high molecular weight was not obtained. On the other hand, the polyadditions of BPGE with m-BDSC proceeded very smoothly with high yield (81–91%) to give polymers with relatively high molecular weights in anisole at 130°C for 24 h when quaternary phosphonium salts were used as catalysts. The polyaddition was also enhanced by the addition of certain crown ether complexes. However, the catalytic activity of these compounds was less than those of quaternary phosphonium salts. Furthermore, polyadditions of certain bisepoxides with disulfonyl chlorides were also carried out to produce the corresponding polymers under the same reaction conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 249–256, 1998  相似文献   

16.
 以 Cu2(NO3)(OH)3/AC (活性碳) 为催化剂前驱体, 在惰性气氛中于不同温度热处理分别制得无氯的 CuO/AC, Cu2O/AC 和 Cu0/AC 催化剂, 并用于甲醇直接气相氧化羰基化合成碳酸二甲酯 (DMC) 反应. 结果表明, 200 °C 处理制得的催化剂中, Cu 物种以 CuO 为主. 随着处理温度的升高, 催化剂中 CuO 含量逐渐降低, 而 Cu2O 含量增加; 400 °C 制备的催化剂中, Cu 物种仅以 Cu2O 形式存在; 而 450 °C 以上处理时则以 Cu0 形式存在. 随着热处理温度的提高, 相应催化剂活性逐渐增加, 表明 CuO, Cu2O 和 Cu0 均具有催化活性, 其活性大小的顺序为 CuO < Cu2O < Cu0. 在 140 °C, CO:MeOH:O2 = 4:10:1, SV = 5 600 h1 条件下, 450 °C 处理制备的 Cu0/AC 催化剂表现出较高的催化甲醇氧化羰基化活性, 其中甲醇转化率达 11.5%, DMC 的时空收率和选择性分别为 261.9 mg/(g•h) 和 76.0%.  相似文献   

17.
Copper and lanthanum promoted cobalt catalysts for CO2 hydrogenation to higher hydrocarbons are described. The catalysts were prepared by the self-propagating high-temperature synthesis followed by alkaline leaching. They are active in CO2 hydrogenation at 200 °C under 10 bar pressure (CO2 : H2 = 1 : 3) with selectivity to C2+ alkanes up to 39%; no alkenes and alcohols are formed under these experimental conditions.  相似文献   

18.
Performance of MnOx/Al2O3 catalytic systems was studied after they were roasted at different temperatures in the range of 650 – 1100°C. The maximum activity of the catalysts was reached when the catalyst roasting temperature was 1000°C. To explain the results, the X-ray diffraction analyses of THE catalysts were performed.  相似文献   

19.
A highly active superacid of 2–4 wt.% Ru-sulfated ZrO2 for the isomerization of butane to isobutane was obtained by exposing RuOx/ZrO2 to 1 N H2SO4 followed by calcining in air at 550°C. The RuOx/ZrO2 was prepared by impregnating zirconium hydroxide with a solution of RuCl3 followed by drying at 300°C. The catalyst was much more active than the superacid of sulfated zirconia, the temperature difference to show the same conversion between both catalysts being more than 145°C.  相似文献   

20.
张贺  邹永刚  彭悦 《催化学报》2017,38(1):160-167
由发电厂等固定源和柴油机等移动源排放的一氧化氮(NO)造成的环境污染问题日益严重.随着严苛的排放法规出台,NO排放控制技术受到越来越多关注.NH3选择性催化还原(SCR)技术是目前去除NO应用最为广泛的方法之一.商业催化剂V2O5-WO3/TiO2在300–400℃温度窗口内显示出优越的NO去除效率,但仍存在一些问题,如钒氧化物的毒性以及在高温时形成N2O和SO3.因此,开发出低钒或无钒的新型催化剂是解决上述问题的关键.CeO2和含铈材料是重要的催化剂载体,具有良好的还原能力和氧存储功能,因而广泛应用于催化领域.CeO2添加到商用催化剂中不仅可以降低钒用量,而且可以提高催化剂抗碱金属中毒能力.CeO2-WO3催化剂在200℃以上时比商用催化剂具有更宽的温度窗口,并展现出较高的抗SO2和碱金属中毒能力.CeO2-ZrO2催化剂通过添加过渡金属元素可以提升其SCR活性,在较宽的温度窗口内具有较高的催化活性.废气中SO2可导致催化剂失活,在实际应用中催化剂硫中毒是较为常见的催化剂失效原因.通常情况下,锰基和铁基催化剂最容易硫中毒.然而CeO2催化剂在硫酸化处理后却展现出良好的SCR活性.催化剂硫酸化主要包括气相、液相和前驱体硫化三种方法.三种方法各有异同,但在催化剂表面形成的硫物种都是SO42–.硫酸化可以增强Ce基催化剂的SCR活性,但是对于硫化引起的催化剂表面酸性、氧化还原性以及NO吸附脱附性质的详细研究报道较少.本文通过液相法对CeO2-ZrO2(CeZr)催化剂进行了硫酸化.XRD结果表明,硫酸化并未对催化剂结晶结构产生影响.TPD和TPR结果表明,硫酸化后催化剂(S-CeZr)表面酸性增强,但抑制了其氧化性.通过原位红外光谱技术系统研究了催化剂在SCR反应过程中表面物种的变化,结果发现,CeZr和S-CeZr的催化机理相同,不同的SCR活性主要是由表面酸性和氧化性引起的.CeO2基催化剂在不同温度窗口遵循不同反应机理.CeZr催化剂具有较强的氧化还原性,使其对NO和NH3具有很强的氧化能力,所以其在低于200℃时具有较好的SCR活性.而S-CeZr催化剂具有更多的Br?nsted酸性位,导致NO不易吸附在催化剂表面,所以其在低温时SCR活性较差,但在高温时(>200℃)具有优良的SCR活性.通过SCR活性和反应机理研究,发现在高温时(>200℃),表面酸性尤其是强酸Br?nsted酸性位在SCR反应中起到决定性作用;而在低温时(<200℃),酸性位对NH3分子较强的键合作用导致NH3难以被氧化,所以较强的酸性位对SCR活性具有抑制作用,而氧化还原性在低温时对SCR反应起到主要作用.同时,在高温时,较高的氧化性可使NH3被O2直接氧化,导致N2选择性降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号