首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Carbon nanotubes (CNTs) were synthesized by thermal decomposition of methane at 900 °C using Co–Mo/MgO, Fe–Mo/MgO, and Ni–Mo/MgO catalysts. To obtain metallic nanoparticles, polyoxomolybdate clusters of Co, Ni, and Fe deposited on MgO were thermally decomposed at 700 °С, and the obtained oxides were heated in a carbon-containing atmosphere. The method of transmission electron microscopy (TEM) testified formation of one to ten walled CNTs with the average outer diameter depending on the catalyst used. Raman spectroscopy data confirmed the presence of single-walled CNTs in the samples obtained with Co–Mo/MgO and Fe–Mo/MgO catalysts. The electrochemical properties demonstrated by the obtained materials in supercapacitors are shown to be functions of their structural and compositional features.  相似文献   

2.
Two series of Co and Ni based catalysts supported over commercial (ZrO2, CeO2, and Al2O3) nano supports were investigated for dry reforming of methane. The catalytic activity of both Co and Ni based catalysts were assessed at different reaction temperatures ranging from 500—800 °C; however, for stability the time on stream experiments were conducted at 700 °C for 6 h. Various techniques such as N2 adsorption‐desorption isotherm, temperature‐programmed reduction (H2‐TPR), temperature‐programmed desorption (CO2‐TPD), temperature‐programmed oxidation (TPO), X‐ray diffraction (XRD), thermogravimetric analysis (TGA) were applied for characterization of fresh and spent catalysts. The catalytic activity and stability tests clearly showed that the performance of catalyst is strongly dependent on type of active metal and support. Furthermore, active metal particle size and Lewis basicity are key factors which have significant influence on catalytic performance. The results indicated that Ni supported over nano ZrO2 exhibited highest activity among all tested catalysts due to its unique properties including thermal stability and reducibility. The minimum carbon deposition and thus relatively stable performance was observed in case of Co‐Al catalyst, since this catalyst has shown highest Lewis basicity.  相似文献   

3.
Catalytic decomposition of methane has been studied extensively as the production of hydrogen and formation of carbon nanotube is proven crucial from the scientific and technological point of view. In that context, variation of catalyst preparation procedure, calcination temperature and use of promoters could significantly alter the methane conversion, hydrogen yield and morphology of carbon nanotubes formed after the reaction. In this work, Ni promoted and unpromoted Fe/Al2O3 catalysts have been prepared by impregnation, sol–gel and co-precipitation method with calcination at two different temperatures. The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption, temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The catalytic activity was tested for methane decomposition reaction. The catalytic activity was high when calcined at 500 °C temperature irrespective of the preparation method. However while calcined at high temperature the catalyst prepared by impregnation method showed a high activity. It is found from XRD and TPR characterization that disordered iron oxides supported on alumina play an important role for dissociative chemisorptions of methane generating molecular hydrogen. The transmission electron microscope technique results of the spent catalysts showed the formation of carbon nanotube which is having length of 32–34 nm. The Fe nanoparticles are present on the tip of the carbon nanotube and nanotube grows by contraction–elongation mechanism. Among three different methodologies impregnation method was more effective to generate adequate active sites in the catalyst surface. The Ni promotion enhances the reducibility of Fe/Al2O3 oxides showing a higher catalytic activity. The catalyst is stable up to six hours on stream as observed in the activity results.  相似文献   

4.
Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co‐precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2‐TPR and TEM. The catalyst characterization revealed the formation of multi‐walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C revealed the relative profiles of methane conversions increased as the %Fe loading was increased. Higher %Fe loadings decreased surface area of the catalyst. Iron catalyst supported with Al2O3 exhibited somewhat higher catalytic activity compared with MgO and TiO2 supported catalysts when above 35% Fe loading was used. CH4 conversion of 69% was obtained utilizing 60% Fe/Al2O3 catalyst. Alternatively, Fe/MgO catalysts gave the highest initial conversions when iron loading below 30% was employed. Indeed, catalysts with 15% Fe/MgO gave 63% conversion and good stability for 1 h time on stream. Inappropriateness of Fe/TiO2 catalysts in the catalytic methane decomposition was observed.  相似文献   

5.
A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial activity and a poor stability. The formation of the CuZn alloys was observed in the deactivated Cu/Zn catalysts which were used for methanol decomposition at 250 . When small amounts of Ni were added in the catalyst, the Cu/Zn/Ni(molar ratio 5/4/ x) catalysts showed a high activity at a low temperature. The activity and the stability of the catalyst depend on the nickel content. The activity of the Cu/Zn/Ni catalysts was maintained at a. relatively stable value of 78% conversion of methanol with 95% selectivity of H2, 93% selectivity of CO, and a more than 70% yield of hydrogen was obtained at 250 C when x >1. The stability of the Cu/Zn/Ni (molar ratio 5/4/x) catalysts showed the maximum (ca 88%) when x=1. The stabilization effect of nickel on the Cu/Zn based catalysts may lead to the increasin  相似文献   

6.
Selective catalytic reduction (SCR) of NOx by NH3 over a series of Mn–M/Z catalysts (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, and Z = the ZSM-5 Zeolite) synthesized by wet impregnation method was investigated. Mn–Fe/Z, Mn–Co/Z, and Mn–Cu/Z catalysts exhibited approximately 100 % NOx conversion over a wide temperature range (200–360 °C) in a defined atmospheric condition, which was noticeably greater than that of Mn–Cr/Z (340–360 °C). Furthermore, the effect of addition of second metal oxide species to the initial Mn/Z catalyst on the structure of catalysts was studied by several characterization techniques. BET measurements revealed high surface area and pore volume of the Mn–Cu/Z catalyst. In addition, the XRD and UV–Vis DR results showed that addition of co-doped metal oxide species improved the dispersion of metal ions and inhibited crystallization of metal oxides. UV–Vis studies also were in good accordance with DTA/TG results confirming the formation of cobalt oxide and copper oxide clusters in Mn–Co/Z and Mn–Cu/Z catalysts, respectively. The FTIR spectra of pyridine adsorption, in addition, suggested the Mn–Cu/Z catalyst contained the most Lewis acid sites leading to more NOx adsorption capacity.  相似文献   

7.
The nanopowders of Ni and Co metals and their alloy were prepared by plasma-assisted milling, and the activity of catalysts on their basis was studied in the carbon dioxide reforming of methane (CDRM) at atmospheric pressure. It was found that the catalytic activity of Ni nanopowder rapidly decreased because of the blocking of its surface by coking products. Co powder exhibited lower but stable activity, which gradually decreased as a result of coking only 300 h after the onset of reaction. A Ni-Co alloy (1: 1, by weight) is an active and selective catalyst for CDRM. Its catalytic activity appeared at 400°C; at 870°C, conversion reached 90% and remained unchanged for 500 h. The initial activity was restored by the regeneration of a catalyst based on the Ni-Co alloy with molecular hydrogen for several hours at 400°C.  相似文献   

8.
CO methanation on Ni/CeO2 has recently received increasing attention. However, the low-temperature activity and carbon resistance of Ni/CeO2 still need to be improved. In this study, plasma decomposition of nickel nitrate was performed at ca. 150°C and atmospheric pressure. This was followed by hydrogen reduction at 500 °C in the absence of plasma, and a highly dispersed Ni/CeO2 catalyst was obtained with improved CO adsorption and enhanced metal-support interaction. The plasma-decomposed catalyst showed significantly improved low-temperature activity with high methane selectivity (up to 100%) and enhanced carbon resistance for CO methanation. For example, at 250°C, the plasma-decomposed catalyst showed a CO conversion of 96.8% with high methane selectivity (almost 100%), whereas the CO conversion was only 14.7% for a thermally decomposed catalyst.  相似文献   

9.
《Arabian Journal of Chemistry》2020,13(11):8146-8159
In the present work, nickel (Ni), zinc (Zn), copper (Cu), cobalt (Co) and iron (Fe) are tested as catalyst dopants on Malaysian dolomite calcined at T = 900 °C (CMD900). The physicochemical properties of all synthesised catalyst are investigated by X-ray diffraction, Brunauer–Emmett–Teller surface area, temperature-programmed desorption of carbon dioxide and scanning emission microscopy. The synthesised catalysts are tested on the basis of the deoxygenation (DO) reaction of waste cooking oil to produce liquid fuels under N2 atmosphere. The chemical composition of the liquid product is identified by gas chromatography–mass spectroscopy. The overall study suggests that Ni/CMD900 catalyst exhibits the highest performance with over 67.0% conversion and high selectivity (80.2%) with a high proportion of saturated linear hydrocarbons that corresponds to green diesel. Result indicates that Ni/CMD900 is a highly potential DO catalyst with 19.8% oxygenated compound, which is favourable for decarboxylation and/or decarboxylation predominates.  相似文献   

10.
The performance of Cu–Ni/LaZnAlO4 and Cu–Ni/γ-Al2O3 catalysts in the methanol reforming process in a monolith reactor in the temperature range of 200–350 °C, feed flow rate of WHSV = 20.8 h?1 and atmospheric pressure has been investigated. In order to perform a more thorough investigation, surface area, morphology and crystalline structure of the synthetic catalysts have been studied using BET, FE-SEM, TPR, FT-IR, TEM, TGA and XRD analyses. The results have shown that Cu–Ni/LaZnAlO4 catalyst synthesized by combustion reaction method under ultrasound irradiation has a very high efficiency and catalytic activity, low reduction temperature, high mechanical resistance and large pore sizes. The latter causes a higher percentage of active metal impregnation and better distribution on the support, greater resistance against sintering and maintenance of catalyst inertness at temperatures over 1000 °C, in comparison with conventional catalysts such as Cu–Ni/γ-Al2O3. This make its substitution for currently used catalysts affordable.  相似文献   

11.
The carbon deposits forming upon the suboxidative pyrolysis of methane on resistive FeCrAl catalysts heated with electric current were studied. The suboxidative pyrolysis of methane was carried out in a flow reactor at the ratio CH4: O2 = 15: 1 in a catalyst-coil temperature range of 600–1200°C; a cold reaction mixture (~20°C) was supplied. The morphology and structure of the carbon deposits and changes in the composition and structure of the catalyst were characterized by scanning electron microscopy, transmission electron microscopy with EDX analysis, Raman spectroscopy, and X-ray diffraction analysis. Various forms of carbon deposits, including branched nanotubes, and metal carbides formed by catalyst constituents were detected. It was found that the carbon deposits on the catalyst surface were morphologically different from the deposits on quartz reactor walls. The reasons for these differences were considered.  相似文献   

12.
The hydrogenolysis of dimethyl disulfide in the presence of Ni,Mo and Co,Mo bimetallic sulfide catalysts was studied at atmospheric pressure and T = 160–400°C. At T ≤ 200°C, dimethyl disulfide undergoes hydrogenolysis at the S-S bond, yielding methanethiol in 95–100% yield. The selectivity of the reaction decreases with increasing residence time and temperature due to methanethiol undergoing condensation to dimethyl disulfide and hydrogenolysis at the C-S bond to yield methane and hydrogen sulfide. The specific activity of the Co,Mo/Al2O3 catalyst in hydrogenolysis at the S-S and C-S bonds is equal to or lower than the total activity of the monometallic catalysts. The Ni,Mo/Al2O3 catalyst is twice as active as the Ni/Al2O3 + Mo/Al2O3 or the cobalt-molybdenum bimetallic catalyst.  相似文献   

13.
Catalytic methane decomposition into hydrogen and carbon nanofibers and the oxidations of carbon nanofibers with CO2, H2O and O2 were overviewed. Supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/carbon nanofiber) were effective for the methane decomposition. The activity and life of the supported Ni catalysts for methane decomposition strongly depended on the particle size of Ni metal on the catalysts. The modification of the catalysts with Pd enhanced the catalytic activity and life for methane decomposition. In particular, the supported Ni catalysts modified with Pd showed high turnover number of hydrogen formation at temperatures higher than 973 K with a high one-pass methane conversion (>70%). However, sooner or later, every catalyst completely lost their catalytic activities due to the carbon layer formation on active metal surfaces. In order to utilize a large quantity of the carbon nanofibers formed during methane decomposition as a chemical feedstock or a powdered fuel for heat generation, they were oxidized with CO2, H2O and O2 into CO, synthesis gas and CO2, respectively. In every case, the conversion of carbon was greater than 95%. These oxidations of carbon nanofibers recovered or enhanced the initial activities of the supported Ni catalysts for methane decomposition.  相似文献   

14.
Binary Al?CTi, Al?CZr and Al?CZn oxides, prepared by the sol?Cgel method were used as supports of catalytic systems. The catalysts were prepared by impregnation of these supports with the low cost Co or Ni nitrate salts and subsequent calcination at 700?°C. Catalysts have been characterized by SBET, XRD and TPR techniques. The catalysts were tested in ethanol partial oxidation using a fixed-bed quartz reactor at atmospheric pressure and temperature at 600?°C. In test reactions a constant feed composition was used with O2/EtOH molar ratio of 0.75 in nitrogen balance. The catalytic performance of the systems depends on type of support and type of promoter. Hydrogen and CO are the predominant products beside some by-products in different quantities (CO2, methane, ethylene, acetaldehyde, acetone, acetic acid). The Co and Ni catalysts supported on AlZn binary oxide showed the highest selectivity to hydrogen and to carbon monoxide with full ethanol conversion. Selectivity of hydrogen follows the order of Co(Ni)AlZn?>?Co(Ni)AlTi?>?Co(Ni)AlZr. The best performance was obtained by NiAlZn catalyst with 89?% hydrogen selectivity.  相似文献   

15.
通过软模板法合成了SBA-16分子筛,采用高温氨气氮化的方法使有序介孔硅材料中的氧原子部分被氮原子取代,得到氮化的SBA-16载体(SBA-16-N)。采用满孔浸渍法制备了镍基催化剂,并将制得的Ni/SBA-16和Ni/SBA-16-N催化剂用于甲烷二氧化碳重整反应。通过透射电镜、氮气物理吸附、X射线衍射、X射线光电子能谱和二氧化碳程序升温脱附等手段研究了载体和催化剂的结构,并利用热重分析对反应之后回收催化剂进行了表征。结果表明,高温氮化后的分子筛中掺入了氮元素,增加了载体的碱性,改善了载体对反应气体的吸附活化能力,增强了载体与金属之间的相互作用,从而提高了催化剂的活性和抗积炭性能。  相似文献   

16.
Methane decomposition into hydrogen and nanofibrous carbon in the presence of high-percentage catalysts (70–90)% Ni–(0–20)% Cu–10% Al at a temperature of 948 K and pressures of 1 to 5 atm was studied in order to develop a technology for enrichment of natural gas with hydrogen. It was found that, With an increasing copper content in the catalyst and and with increasing pressure, the average, methane decomposition rate decreases by 10–20% and the catalyst lifetime and the specific yield of hydrogen (mol/molNi+Cu) become (3.8–12) times higher over the catalyst deactivation period. The mechanisms by which the pressure and the copper content of the catalyst affect these process characteristics are discussed.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(3):277-282
Ni7.5/NaY catalysts were prepared using two different methods, the incipient wetness impregnation method and the “two-solvent” method. These catalysts were characterised by N2 sorption, XRD, TEM and TPR. Their activity and stability in the dry reforming of methane were tested at atmospheric pressure under an equimolar mixture of methane and carbon dioxide. Three different Ni species, very small, spherical, and layers of nickel silicate were observed by TEM. The preparation by the two-solvent method led to a better dispersion of the active phase as well as to better activity and stability. These catalysts were promoted with small amounts (0.1 wt%) of rhodium. Rhodium facilitates the reducibility and greatly enhances catalytic activity. A complete conversion (100%) for CH4 and CO2 over the Rh promoted catalyst is achieved at 584 °C and 559 °C respectively, while for the non-promoted Ni7.5/NaY catalyst, only a 60% conversion rate for CH4 and CO2 is reached at the same temperatures.  相似文献   

18.
Highly dispersed Ni/SBA-15 catalysts were prepared via template extraction with varying different extraction times (Ni/S-x, x = 0.5, 3.5, 6.5 h) for methane reforming with carbon dioxide. Based on the various characterization results and initial activity evaluation, Ni/S-3.5 h catalyst showed the best catalytic performance. Compared with the catalyst prepared via template calcination (Ni-S), Ni/S-3.5 h catalyst held steady with CH4 and CO2 conversions while those of the Ni-S catalyst respectively decreased by 15 and 11% during the long-term stability test at 700 °C for 50 h. As TEM and TG–DSC results confirmed, Ni particles in spent Ni/S-3.5 h catalyst stayed well-dispersed with size slightly increasing from an initial 3.9–4.1 nm and nearly no carbon deposition was observed. On the contrary, Ni-S catalyst was subjected to sintered metal particles (increased from 11.6 to 18 nm) and formed carbon fibers. The prominent resistance to sintering and coking over stable Ni/S-3.5 h catalyst was attributed to the high dispersion and strengthened metal-support interaction induced via the residual in situ templates.  相似文献   

19.
苯;甲烷芳构化反应催化剂的研究——Mo-M/HZSM-5在无氧条件下的催化性能和表面性质  相似文献   

20.
The rate of the gas-phase oxidation of ethanol, 2-propanol, acetone, ethyl acetate, dioxane, and benzene with atmospheric oxygen is studied on surfaces of bimetallic oxide catalysts Co–Fe, Cu–Fe, Cr–Co, and Ni–Fe, prepared via thermal decomposition of double complex compounds in air. It is found that the rate of oxidation of volatile compounds depends on the volume of the transient pores in the catalyst sample. The rate of oxidation on the same catalyst at 350°C depends on the nature of the substance in the order: acetone > ethyl acetate > ethanol > propanol > dioxane, benzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号