首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
化学   32篇
晶体学   2篇
力学   14篇
数学   3篇
物理学   3篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   13篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
Effects of     
Effects of cetyltrimethylammonium bromide (CTABr) micelles on second-order rate constants (k(n)(obs)) for nucleophilic reactions of amines (piperidine and n-butylamine) with ionized phenyl salicylate (PS(-)) reveal a nonlinear decrease with the increase in [D(n)] (where [D(n)] = [CTABr](T) - cmc) at a constant [NaBr] and 35 degrees C. The observed data, at a constant [NaBr], fit reasonably well to a pseudophase model of micelles, and such a data fit gives kinetic parameters such as CTABr micellar binding canstant (K(S)) of PS(-). The effect of [NaBr] upon K(S) is explained with the empirical relationship K(S) = K(S)(0)/(1 + psi[NaBr]), where psi is an empirical parameter.  相似文献   
2.
The effects of Brij 35 micelles, CTABr micelles, and mixed Brij 35–CTABr micelles on the acid–base behavior of phenyl salicylate (PST) have been studied in aqueous solution containing 2% v/v acetonitrile. The apparent pKb (pKappb) of PST is decreased by 1.5 pK units with the increase in [Brij 35] from 0 to 0.02 M which is attributed to micellar medium effect. The values of pKappb remain almost independent of [CTABr] within its range 0.01–0.03 M. The increase in [CTABr] from 0 to 0.03 M in aqueous solution containing 0.02 M Brij 35 has not resulted in a change in pKappb. This shows that the characeristic structural features of nonionic Brij 35 micelles remain essentially unchanged on addition of CTABr under the present experimental conditions.  相似文献   
3.
4.
Nano-activated carbons obtained from oil palm empty fiber bunch (AC-EFB), bamboo stem (AC-BS), and coconut shells (AC-CNS) were reinforced in epoxy matrix to fabricate epoxy nanocomposites. The dynamic mechanical analysis of epoxy nanocomposites was carried out, and 5% AC-CNS treated with KOH-filled epoxy composites displayed the highest storage modulus of all the activated carbon–filled epoxy composites. The incorporation of a small amount of AC-BS, AC-EFB, and AC-CNS to the epoxy matrix enhanced the damping characteristics of the epoxy nanocomposites. The 5% AC-EFB treated with H3PO4 filled epoxy composites showed the highest glass transition temperature (Tg) in all temperature ranges.  相似文献   
5.
In this paper, the problem of unsteady flow induced by a shrinking sheet with mass transfer in a rotating fluid is studied. The transformed boundary layer equations are solved numerically by an implicit finite‐difference scheme known as the Keller‐box method. The influence of rotation, unsteadiness and mass suction parameters on the reduced skin friction coefficients f″(0) and g′(0), as well as the lateral velocity and velocity profiles are presented and discussed in detail. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
In this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0.  相似文献   
7.
The self-assembly of an amide-functionalized dithienyldiketopyrrolopyrrole (DPP) dye in aqueous media was achieved through seed-initiated supramolecular polymerization. Temperature- and time-dependent studies showed that the spontaneous polymerization of the DPP derivative was temporally delayed upon cooling the monomer solution in a methanol/water mixture. Theoretical calculations revealed that an amide-functionalized DPP derivative adopts an energetically favorable folded conformation in the presence of water molecules due to hydration. This conformational change is most likely responsible for the trapping of monomers in the initial stage of the cooperative supramolecular polymerization in aqueous media. However, the monomeric species can selectively interact with externally added fragmented aggregates as seeds through concerted π-stacking and hydrogen-bonding interactions. Consequently, the time course of the supramolecular polymerization and the morphology of the aggregated state can be controlled, and one-dimensional fibers that exhibit a J-aggregate-like bathochromically shifted absorption band can be obtained.  相似文献   
8.
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.  相似文献   
9.
The problem of steady laminar mixed convection boundary layer flow of an incompressible viscous fluid along vertical moving thin needles with variable heat flux for both assisting and opposing flow cases is theoretically considered in this paper. The governing boundary layer equations are first transformed into non-dimensional forms. The curvature effects are incorporated into the analysis whereas the pressure variation in the axial direction has been neglected. These equations are then transformed into similarity equations using the similarity variables, which are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The solutions are obtained for a blunt-nosed needle (m = 0). Numerical calculations are carried out for various values of the dimensionless parameters of the problem, which include the mixed convection parameter λ, the Prandtl number Pr and the parameter a representing the needle size. It is shown from the numerical results that the skin friction coefficient, the surface (wall) temperature and the velocity and temperature profiles are significantly influenced by these parameters. The results are presented in graphical form and are discussed in detail.  相似文献   
10.
A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO2) was prepared by ultrasound-assisted synthesis. The uniform SnO2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors.
Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号