首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Semiconductor nanocrystal quantum dots (QDs), owing to their unique opto-electronic properties determined by quantum confinement effects, have been the subject of extensive investigations in different areas of science and technology in the past two decades. The electrochemical behaviour of QDs, particularly for CdSe and CdTe nanocrystals, has also been explored, although to a lesser extent compared to the optical properties. Voltammetric measurements can be used to probe the redox levels available for the nanocrystals, which is an invaluable piece of information if these systems are involved in electron transfer processes. Electrochemical data can also foster the interpretation of the spectroscopic properties of QDs, and give insightful information on their chemical composition, dimension, and surface properties. Hence, electrochemical methods constitute in principle an effective tool to probe the quality of QD samples in terms of purity, size dispersion, and surface defects. The scope of this critical review is to discuss the results of electrochemical studies carried out on CdSe and CdTe core and core-shell semiconductor nanocrystals of spherical shape. Examples of emerging or potential applications that exploit electroactive quantum dot-based systems will also be illustrated.  相似文献   

2.
We report a new strategy based on mercury cation exchange in nonpolar solvents to prepare bright and compact alloyed quantum dots (QDs) (Hg(x)Cd(1-x)E, where E = Te, Se, or S) with equalized particle size and broadly tunable absorption and fluorescence emission in the near-infrared. The main rationale is that cubic CdE and HgE have nearly identical lattice constants but very different band gap energies and electron/hole masses. Thus, replacement of Cd(2+) by Hg(2+) in CdTe nanocrystals does not change the particle size, but it greatly alters the band gap energy. After capping with a multilayer shell and solubilization with a multidentate ligand, this class of cation-exchanged QDs are compact (6.5 nm nanocrystal size and 10 nm hydrodynamic diameter) and very bright (60-80% quantum yield), with narrow and symmetric fluorescence spectra tunable across the wavelength range from 700 to 1150 nm.  相似文献   

3.
This communication describes a new type of alloyed Cd-In-S quantum dots (CdIS QDs) with ultra small particle size and broadly tunable fluorescence emission from 450 to 700 nm. The band gap of CdIS QDs was mainly controlled by their composition rather than their particle size. The CdIS-ZnS core-shell nanocrystals exhibited significantly improved optical properties and chemical stabilities, with the PL quantum yield (QY) of up to 60%.  相似文献   

4.
Highly luminescent silicon nanocrystals with discrete optical transitions.   总被引:3,自引:0,他引:3  
A new synthetic method was developed to produce robust, highly crystalline, organic-monolayer passivated silicon (Si) nanocrystals in a supercritical fluid. By thermally degrading the Si precursor, diphenylsilane, in the presence of octanol at 500 degrees C and 345 bar, relatively size-monodisperse sterically stabilized Si nanocrystals ranging from 15 to 40 A in diameter could be obtained in significant quantities. Octanol binds to the Si nanocrystal surface through an alkoxide linkage and provides steric stabilization through the hydrocarbon chain. The absorbance and photoluminescence excitation (PLE) spectra of the nanocrystals exhibit a significant blue shift in optical properties from the bulk band gap energy of 1.2 eV due to quantum confinement effects. The stable Si clusters show efficient blue (15 A) or green (25-40 A) band-edge photoemission with luminescence quantum yields up to 23% at room temperature, and electronic structure characteristic of a predominantly indirect transition, despite the extremely small particle size. The smallest nanocrystals, 15 A in diameter, exhibit discrete optical transitions, characteristic of quantum confinement effects for crystalline nanocrystals with a narrow size distribution.  相似文献   

5.
Band structure parameters such as the conduction band edge, the valence band edge and the quasi‐particle gap of diffusing CdSe quantum dots (Q‐dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q‐dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi‐empirical pseudopotential method (SEPM)—especially in the strong size‐confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q‐dots, the difference between the quasi‐particle gap and the optical band gap gives the electron–hole Coulombic interaction energy (Je1,h1). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.  相似文献   

6.
《印度化学会志》2021,98(12):100254
An aqueous-based green route has been demonstrated for the preparation of ZnSe quantum dots (QDs) and doping of transition metals in the presence of thiol mercaptopropionic acid (MPA) as growth moderator by refluxing at 100 ​°C. The structure and morphology of synthesized ZnSe quantum dots have been investigated by using X-ray diffraction studies (XRD), Ultraviolet–Visible spectroscopy (UV–vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) Spectroscopy. XRD studies indicate the structure of the quantum dots is cubic with diameters in the range of 4–5 ​nm. Fourier Transform Infrared (FTIR) studies proves that MPA ligands were bound strongly on the ZnSe nanocrystal surface as thiolate. The band gap energy (Eg) was calculated to be 3.8 ​eV which is blue shifted from the standard value of bulk band gap (2.60–2.70eV. Photoluminescence spectra shows broad emission value ranging between 400 and 700 ​nm due to surface defects which has been reduced by doping with transition metals (Fe, Co, Ni, Cd) in aqueous medium. The effective passivation of trap luminescence is done by doping leading to increase in photoluminescence quantum yield specifically with nickel and cadmium doped ZnSe QDs.  相似文献   

7.
Using the density functional theory (DFT) with the hybrid nonlocal exchange correlation functional of Becke and Lee, Yang and Parr (B3LYP), we have calculated the optical gap and the oscillator strengths for several of the lowest, spin and symmetry allowed, electronic transitions of small Ge nanocrystals passivated by hydrogen. The largest nanoparticle has an approximate diameter of 2 nm. Our results show that the optical gap exhibits size dependence (due to quantum confinement) roughly similar to silicon nanoparticles. However, for this range of diameters, there is an indirect-to-direct transition in the spectra of Ge as the size of the nanocrystals decrease. The first allowed excitation (fundamental optical gap) of each germanium nanoparticle has relatively larger oscillator strengths compared to silicon. The diameter of the smallest Ge nanocrystal capable to emit in the visible region of the spectrum, is approximately 1.9 nm, compared to 2.2 nm for silicon nanocrystals.  相似文献   

8.
Here we report the formation and spectroscopic properties of cadmium sulfide (CdS) nanocrystal systems: individual nanocrystal and CdS aggregates. The optical absorption and luminescence spectra of the aggregated CdS nanocrystals and individual nanocrystal show exciton aggregate and individual exciton characteristics. Although it is not Bose-Einstein condensation, such aggregated quantum dots (QDs) seem to supply us opportunity to study the interactions and condensation of excitons in multi-QDs system, not in the separated QDs system.  相似文献   

9.
The distinct optical emission from ZnO materials, nanoneedles and microcrystallites synthesized with different sizes and morphologies by a flow deposition technique, is investigated with X‐ray excited optical luminescence (XEOL) and time‐resolved X‐ray excited optical luminescence (TR‐XEOL) from a synchrotron light source at the O K and Zn L3,2 edges. The innovative use of XEOL, allowing site‐specific chemical information and luminescence information at the same time, is fundamental to provide direct evidence for the different behaviour and the crucial role of bulk and surface defects in the origin of ZnO optical emission, including dynamics. XEOL from highly crystalline ZnO nanoneedles is characterized by a sharp band‐gap emission (~380 nm) and a broad red luminescence (~680 nm) related to surface defects. Luminescence from ZnO microcrystallites is mostly dominated by green emission (~510 nm) associated with defects in the core. TR‐XEOL experiments show considerably faster decay dynamics in nanoneedles compared to microcrystallites for both band‐gap emission and visible luminescence. Herein we make a fundamental step forward correlating for the first time the interplay of size, crystallinity, morphology and excitation energy with luminescence from ZnO materials.  相似文献   

10.
We design well‐defined metal‐semiconductor nanostructures using thiol‐functionalized CdTe quantum dots (QDs)/quantum rods (QRs) with bovine serum albumin (BSA) protein‐conjugated Au nanoparticles (NPs)/nanorods (NRs) in aqueous solution. The main focus of this article is to address the impacts of size and shape on the photophysical properties, including radiative and nonradiative decay processes and energy transfers, of Au‐CdTe hybrid nanostructures. The red shifting of the plasmonic band and the strong photoluminescence (PL) quenching reveal a strong interaction between plasmons and excitons in these Au‐CdTe hybrid nanostructures. The PL quenching of CdTe QDs varies from 40 to 86 % by changing the size and shape of the Au NPs. The radiative as well as the nonradiative decay rates of the CdTe QDs/QRs are found to be affected in the presence of both Au NPs and NRs. A significant change in the nonradiative decay rate from 4.72×106 to 3.92×1010 s?1 is obtained for Au NR‐conjugated CdTe QDs. It is seen that the sizes and shapes of the Au NPs have a pronounced effect on the distance‐dependent energy transfer. Such metal‐semiconductor hybrid nanostructures should have great potentials for nonlinear optical properties, photovoltaic devices, and chemical sensors.  相似文献   

11.
Electrochemical studies of thiol-capped CdTe nanocrystals in aqueous solution have demonstrated several distinct oxidation and reduction peaks in the voltammograms, with the peak positions being dependent on the size of the nanocrystals. While the size dependence of the reduction and one of the oxidation potentials can be attributed to altering the energetic band positions owing to the quantum size effect, an extraordinary behavior was found for the oxidation peak observed at less positive potentials. In contrast to a prediction based on the quantum size effect, this peak moves to more negative potentials as the nanocrystals' size decreases. Moreover, the contribution of the charge associated with this peak compared to the total charge passed during the nanocrystal oxidation correlates well with the photoluminescence (PL) efficiency of individual fractions of the CdTe nanocrystals. These experimental observations allow a peak to be assigned to the oxidation of Te-related surface traps. The intra-band-gap energy level assigned to these Te-related trap states shifts toward the top of the valence band as the nanocrystal size increases, thus allowing the higher photostability of the larger nanocrystals to be explained. At a certain nanocrystal size, the trap level can even move out of the band gap.  相似文献   

12.
Semiconductor nanocrystal quantum dots have been the subject of extensive investigations in different areas of science and technology in the past years. In particular, there are few studies of magic-sized quantum dots (MSQDs), even though they exhibit features such as extremely small size, fluorescence quantum efficiency, molar absorptivity greater than traditional QDs, and highly stable luminescence in HeLa cell cultures, thereby enabling monitoring of biological or chemical processes. The present study investigated the electrochemical behavior of free CdSe/CdS MSQDs using glassy carbon electrode and CdSe/CdS MSQDs immobilized on a gold electrode modified with a self-assembled cyclodextrin monolayer. The MSQDs showed two peaks in aprotic medium. The functionalized film modifier was prepared and characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy using ferricyanide ions as a redox probe. The prepared modified electrode exhibited a stable behavior. The proposed method was successfully applied to encapsulation studies of mangiferin, a natural antioxidant compound, and cyclodextrin associated with the quantum dot, and the response was compared with that of the modified electrode without QD. The fluorescence study revealed that CdSe/CdS quantum dots emit blue light when excited by an optical source of wavelength of 350 nm and a significant increase in fluorescence and absorbance intensity is observed from the core-shell CdSe/CdS MSQDs when quantities of mangiferin are added to the solution containing thiolated cyclodextrin. CdSe/CdS MSQDs are optically and electrochemically sensitive and can be used for the detection and interaction of compounds encapsulated in cyclodextrin.  相似文献   

13.
Blinking of colloidal nanocrystal quantum dots, random intermittency in the stream of photons emitted by single particles, has long commanded the curiosity of researchers. Why does the particle suddenly shut off, and what are the pathways to quench emission? Single‐particle microscopy is not the only way to approach these fundamental questions on the interaction of light and matter: time‐domain sub‐ensemble spectroscopies can also yield relevant information on microscopic electronic processes. We illustrate recent advances in pulsed optically detected magnetic resonance and highlight the conceptual relevance to unravelling mechanisms controlling intermittency on the single‐particle level. Magnetic resonance reveals two distinct luminescence quenching channels, which appear to be related to those previously surmised from single‐particle studies: a trapped charge‐separated state in which the exciton is quenched by dissociation and the particle remains neutral; and a charged state of the particle in which spin‐dependent Auger recombination quenches luminescence.  相似文献   

14.
Efficiently luminescing colloidal CdTe quantum dots (QDs) were used for the preparation of monodispersed and mixed size QD solids. Luminescence spectra and decay times of the QD emission were measured as a function of temperature to study energy transfer (ET) processes in the QD solids. In the luminescence decay curves of the emission of the largest QDs (acceptors), a rise time of the luminescence signal is observed due to energy transfer from smaller QDs. Both the rise time (a measure for the energy transfer rate) and the luminescence decay time lengthen upon cooling. This is explained by the decreased dipole strength of the excitonic emission of the QDs in the solid due to the presence of a singlet and a lower lying triplet level. Studies of energy transfer in heteronuclear QD solids reveal that single-step ET dominates.  相似文献   

15.
The large structural tolerance of I–III–VI group quantum dots (QDs) to off-stoichiometry allows their photoluminescence properties to be adjusted via doping, thereby enabling application in different fields. However, the photophysical processes underlying their photoluminescence mechanism remain significantly unknown. In particular, the transition channels of CuInSe2 QDs, which are altered by intrinsic and extrinsic intragap states, remain poorly reported. Herein, we investigated the photophysical processes associated with intragap states via electrochemical and optical techniques by using copper deficient Cu−In−Se QDs as well as Zn doped Cu−In−Se QDs. When the Cu/In molar ratios of Cu−In−Se QDs increased from 0.3 : 1 to 0.9 : 1, the photoluminescence spectra displayed a red-shift from 700 nm to 1050 nm. Although there was a blue-shift after the introduction of Zn2+ dopants in Cu−In−Se QDs, a significant red-shift occurred (from 660 nm to 760 nm) when the Zn/Cu molar ratios decreased from 0.7 : 0.3 to 0.3 : 0.7. The Gaussian deconvolution results of the photoluminescence spectra and the band gap derived from absorption spectra by fitting supported the fact that the optical transition channels are dependent on the Cu/In and Zn/Cu molar ratios. After the introduction of the Zn2+ ions, the alloyed-resultant blue-shift of the emission spectra was observed, primarily due to the enlarged band gap; however, the radiative recombination of prominent intrinsic intragap states is still observed; and only a small proportion of the band-edge exciton undergoes recombination for the sample with low Zn content. Cyclic voltammetry measurements revealed well-defined extrinsic ZnCu intragap states (Zn substitution on Cu sites) and intrinsic Cux (x= 1+/2+) states in the band gap. The results presented here provide a better understanding of the varying effects of dopant on photoluminescence in terms of I–III–VI group QDs.  相似文献   

16.
The principal methods for the synthesis of highly luminescent core–shell colloidal quantum dots (QDs) of the most widely used CdSe, CdS, ZnSe, and other AIIBVI nanocrystals are reviewed. One‐pot versus multistage core synthesis approaches are discussed. The noninjection one‐pot method ensures slow, controllable growth of core nanocrystals starting from magic‐size seed recrystallization, which yields defect‐free cores with strictly specified sizes and shapes and a high monodispersity. Subsequent injection of shell precursors allows the formation of gradient core–shell QDs with a smooth potential barrier for electrons and holes, without strains or interfacial defects, and, as a consequence, a luminescence quantum yield (QY) approaching 100 %. These general approaches can also be applied to semiconductor core–shell QDs other than AIIBVI ones to cover the broad spectral range from the near‐UV to IR regions of the optical spectrum, thus displacing fluorescent organic dyes from their application areas.  相似文献   

17.
Multicolor and water-soluble CdTe quantum dots (QDs) were synthesized with thioglycolic acid (TGA) as stabilizer. These QDs have a good size distribution, display high fluorescence quantum yield, and can be applied to the ultrasensitive detection of Pb(II) ion by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and quenching of luminescence is most effective for the smallest particles. The quenching mechanism is discussed. Fairly selective detection was accomplished by utilizing QDs with a diameter of 1.6?nm which resulted in a detection limit of 4.7?nmol?L?1 concentration of Pb(II). The method was successfully applied to the determination of Pb(II) in spinach and citrus leaves, and the results are in good agreement with those obtained with atomic absorption spectrometry.
Figure
Five colors water-soluble CdTe QDs are synthesized with thioglycolic acid as a stabilizer. These QDs can be applied to the ultrasensitive detection of Pb2+ by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and the quenching of luminescence is most effective when the smallest particles are used. The detection limit is 4.7?nmol?L?1 when QDs-I (1.6?nm) are used, which is the lowest in the current related study.  相似文献   

18.
The size‐tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface‐bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self‐assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer.  相似文献   

19.
Thiol-stabilized PbS quantum dots (QDs) with dimensions 3-5 nm capped with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were coUoidally prepared at room temperature. Room temperature photoluminescence quantum efficiency of freshly prepared PbS QDs (7%-11%) remained higher than 5% upon aging for three weeks when the nanocrystals (NCs) were stored in an ice-bath in the dark, and higher than 5%for at least five weeks when extra DTG ligands were introduced into the nanocrystal solution followed by stirring every two weeks. Poly(N-isopropyl acrylamide) (PNIPAM) microgels were produced via precipitation polymerization with dimensions of ca. 230 nm and polydispersity of 3-5%. Incorporation of PbS QDs into PNIPAM microgels indicated that PbS can be incorporated into the interior of microgel particles and not at the microgel interface. The combination of reasonable room temperature quantum efficiency and strong, efficient luminescence covering the 1.3-1.55 μm telecommunication window makes these nanoparticles promising materials in optical devices and telecommunications.  相似文献   

20.
This article highlights some physical studies on the relaxation dynamics and Förster resonance energy transfer (FRET) of semiconductor quantum dots (QDs) and the way these phenomena change with size, shape, and composition of the QDs. The understanding of the excited‐state dynamics of photoexcited QDs is essential for technological applications such as efficient solar energy conversion, light‐emitting diodes, and photovoltaic cells. Here, our emphasis is directed at describing the influence of size, shape, and composition of the QDs on their different relaxation processes, that is, radiative relaxation rate, nonradiative relaxation rate, and number of trap states. A stochastic model of carrier relaxation dynamics in semiconductor QDs was proposed to correlate with the experimental results. Many recent studies reveal that the energy transfer between the QDs and a dye is a FRET process, as established from 1/d6 distance dependence. QD‐based energy‐transfer processes have been used in applications such as luminescence tagging, imaging, sensors, and light harvesting. Thus, the understanding of the interaction between the excited state of the QD and the dye molecule and quantitative estimation of the number of dye molecules attached to the surface of the QD by using a kinetic model is important. Here, we highlight the influence of size, shape, and composition of QDs on the kinetics of energy transfer. Interesting findings reveal that QD‐based energy‐transfer processes offer exciting opportunities for future applications. Finally, a tentative outlook on future developments in this research field is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号