首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

2.
A novel approach to assemble multilayer films of Pt nanoparticle/multiwalled carbon nanotube (MWNTs) composites on Au substrate has been developed for the purpose of improving the methanol oxidation efficiency by providing high catalytic surface area. MWNTs were firstly functionalized with 4‐mercaptobenzene and then assembled on an Au substrate electrode. Pt nanoparticles were fabricated and attached to the surface of the functionalized MWNTs subsequently. Thus a layer of Pt/MWNT composites were assembled on the Au substrate electrode. Repeating above process can assemble different layers of film of Pt/MWNTs composites on the Au electrode. Cyclic voltammetry shows that the Au electrode modified with two layers of film of Pt/MWNT composites exhibits high catalytic ability and long‐term stability for methanol oxidation. The layer‐by‐layer self‐assembly technique provides an efficient strategy to construct complex nanostructure for improving the methanol oxidation efficiency by providing high catalytic surface area.  相似文献   

3.
Redox reactions of solvated molecular species at gold‐electrode surfaces modified by electrochemically inactive self‐assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au–alkanedithiol–NP–molecule hybrid entity. The NP appears to relay long‐range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface‐confined 6‐(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak‐to‐peak separation for NPs in the order Au<Pt<Pd, especially when the length of the alkanedithiol increases from octanedithiol to decanedithiol. The corresponding apparent rate constants, kapp, for decanedithiol are 1170, 360 and 14 s?1 for NPs of Au, Pt and Pd, respectively, indicating that the efficiency of NP mediation of the ET clearly depends on the nature of the NP. Based on a preliminary analysis rooted in interfacial electrochemical ET theory, combined with a simplified two‐step view of the NP coupling to the electrode and the molecule, this observation is referred to the density of electronic states of the NPs, reflected in a broadening of the molecular electron/NP bridge group levels and energy‐gap differences between the Fermi levels of the different metals.  相似文献   

4.
Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.  相似文献   

5.
界面可控硫醇SAMs纳米金修饰金电极的电化学行为研究   总被引:1,自引:0,他引:1  
在裸金电极上自组装不同比例的4,4’-二甲基联苯硫醇(MTP)和硫辛酸(TA)混合液,形成自组装膜(MTP+TA/Au SAMs),再修饰纳米金,制得纳米金混合巯基修饰金电极(AuNPs/MTP+TA/Au)。研究了纳米金混合巯基修饰金电极的电化学行为和阻抗行为,结果表明电极表面pH值的改变对电极表面的电子转移有重要影响。对葡萄糖传感器的制备条件、测定条件、抗干扰能力等进行了讨论,结果表明修饰电极的微结构和微环境有必要进一步研究。  相似文献   

6.
Ultralow Pt‐loading Au nanoparticles have been fabricated on the surface of reduced graphene oxide (RGO) by using underpotential deposition (UPD) monolayer redox replacement process. The Pt/Au/RGO modified electrode exhibits an excellent electrocatalytic activity toward catechol and hydroquinone. Under the optimized condition, the separation of peak‐to‐peak between hydroquinone and catechol is 197 mV, which is wide enough to distinguish the isomers of benzenediol. Catechol is detected by the Pt/Au/RGO/GCE with a low detection limit in the presence of hydroquinone.  相似文献   

7.
A high‐efficiency nanoelectrocatalyst based on high‐density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au‐Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy are employed to characterize the obtained Au‐Pt/SiO2. It was found that each hybrid nanosphere is composed of high‐density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the Au‐Pt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.  相似文献   

8.
A simple electrochemical approach is developed to prepare reduced graphene oxide (RGO)-wrapped carbon fiber (CF) as a novel support for Pt–Au nanocatalysts. The obtained composite electrodes have been characterized by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA), and electrochemical methods. SEM images reveal that the Pt–Au nanoparticles deposited on RGO-wrapped CF (RGO/CF) electrode display smaller particle size and more uniform dispersion than those on the bare CF electrode. Cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, Tafel plots, and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the introduced RGO on CF electrode surface is beneficial to the dispersion of Pt–Au nanoparticles, as a consequence, to the enhancement of the electrocatalytic activity and the antipoisoning ability of Pt–Au towards formic acid electrooxidation.  相似文献   

9.
《Electroanalysis》2017,29(5):1258-1266
The nanoporous graphene papers (NGPs) was prepared by the hard‐template method. The Pt−Pd modified NGPs hybrid was prepared by the self‐assembly method. Then a glassy carbon electrode (GCE) modified with Pt−Pd bimetallic nanoparticles‐functionalized nanoporous graphene composite has been prepared for the electrochemical determination of Xanthine (XA). The Pt−Pd/NGPs hybrid was characterized by transmission electron microscopy, scanning electron microscope and X‐ray diffraction. The electrochemical behavior of XA on Pt−Pd/NGPs/GCE was investigated by cyclic voltammetry and amperometric i‐t. The Pt−Pd/NGPs modified electrode exhibited remarkably electrocatalytic activity towards the oxidation reaction of XA in phosphate buffer solution (pH=5.5). Under the optimal conditions, the determination of XA was accomplished by using amperometric i‐t, the linear response range from 1.0×10−5∼1.2×10−4 M. The detection limit was 3.0×10−6 M (S/N=3). The proposed modified electrode showed good sensitivity, selectivity, and stability with applied to determine XA in human urine.  相似文献   

10.
Pt/Co‐core Au‐shell nanoparticles were synthesized via a two‐step route using NaBH4 as a reducing agent. The nanoparticles are characterized by UV‐vis spectroscopy, transmission electron microscopy (TEM) and powder X‐ray diffraction (XRD). The results indicate that the as‐synthesized Pt/Co‐core Au‐shell nanoparticles have a disordered face centered cubic (fcc) structure, whereas the annealed Pt/Co‐core Au‐shell nanoparticles exhibit an ordered face centered tetragonal (fct) structure. Superconducting quantum interference device (SQUID) studies reveal that the coercivity of the annealed Pt/Co‐core Au‐shell nanoparticles increases to 510 Oe after heat treatment at 500 °C for 2 h.  相似文献   

11.
Mahshid S  Li C  Mahshid SS  Askari M  Dolati A  Yang L  Luo S  Cai Q 《The Analyst》2011,136(11):2322-2329
A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results.  相似文献   

12.
The bimetallic Ag/Au nanoparticles were prepared by underpotential deposition-redox replacement technique on the basis of Au nanoparticles modified glassy carbon (GC) electrode. The as-prepared Ag/Au nanoparticles were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The Ag/Au bimetallic nanoparticles modified GC electrode with low-Ag loading exhibits much better catalytic activity for the reduction of benzyl chloride than Ag nanoparticles modified GC electrode. The result is attributed to the synergic effect between Ag and Au in the reduction process. The chronoamperometry test shows that the Ag/Au nanoparticles possess long-term performance in the electrolysis.  相似文献   

13.
《Electroanalysis》2003,15(12):1060-1066
The voltammetric behavior of methylene blue (MB) at thiol self‐assembled monolayers modified gold electrodes (SAMs/Au) has been investigated. MB exhibited a redox peak at about ?0.35 V (vs.SCE) in alkaline solution at bare gold electrodes. When the gold electrodes were modified with thiol SAMs, the peak grew due to the accumulation of MB at SAMs. With the solution pH rising, more MB was accumulated, hence the peak height increased, which differed from that at bare gold electrodes. The electrode process at SAMs/Au featured the characteristics of adsorption and/or electrode reaction controlled. The enhancing action of glutathione monolayer (GSH SAM), 3‐mercaptopropionic acid monolayer (3MPA SAM) and other thiol SAMs was compared. Among these, GSH SAM made the MB peak increase more. At GSH SAM/Au, the peak height varied linearly with MB concentration over the range of 2 μM to 400 μM. So this can be developed for the determination of MB and studies concerned. The accumulation behavior caused by GSH SAM and native fish sperm dsDNA was compared. The interaction between DNA and MB was also discussed under this condition.  相似文献   

14.
Numerous reports have focused on ferrocene-terminated electroactive self-assembled monolayers (SAMs) on a flat Au surface but only a few on ferrocene SAMs on Au colloid. In this paper, we employ 4-ferrocene thiophenol as a novel capping agent to produce electroactive gold nanoparticles in consideration of the peculiar pi-conjugated structure. Transmission electron microscopy shows the narrow-dispersed gold core with an average core diameter of ca. 2.5 nm. UV/vis spectra examine the pi-conjugated structure of 4-ferrocene thiophenol and surface plasmon absorbance of the indicated gold nanoparticles. X-ray photoelectron spectroscopy reveals electronic properties of the Au core and thiol ligands. Electrochemical measurement shows that the oxidation peak current is proportional to the scan rate, indicating the electrode process is controlled by adsorbed layer reaction. The formal potential of the Fc-MPCs is compared with that of free ferrocene in MeCN solution and the Fc-SAMs. The shifts are attributed to the phenyl moiety in the 4-ferrocene thiophenol and dielectric constant of the solvation environment.  相似文献   

15.
Su L  Mao L 《Talanta》2006,70(1):68-74
This paper describes novel electrochemical properties of gold nanoparticles/alkanedithiol conductive films and their electroanalytical applications for voltammetric determination of trace amount of one kind of environmental pollutants, catechol. The conductive films are prepared by closely packing 12-nm diameter gold nanoparticles (Au-NPs) onto Au electrodes modified with the self-assembled monolayers (SAMs) of alkanedithiols (i.e., HS(CH2)nSH, n = 3, 6, 9). The assembly of the Au-NPs onto the SAM-modified electrodes essentially restores the heterogeneous electron transfer between Au substrate and redox species in solution phase that is almost totally blocked by the SAMs and, as a result, the prepared Au-NP/SAM-modified electrodes possess a good electrode reactivity without a remarkable barrier toward the heterogeneous electron transfer. Moreover, the prepared Au-NP/SAM-modified electrodes are found to exhibit a largely reduced interfacial capacitance, compared with bare Au electrode. These electrochemical properties of the Au-NP/SAM-modified electrodes essentially make them very useful for electroanalytical applications, which is illustrated by voltammetric determination of trace amount detection of environmental pollutant, catechol.  相似文献   

16.
巯基取代噻二唑自组装铂电极测定对苯二酚   总被引:3,自引:0,他引:3  
用自己合成的巯基取代噻二唑试剂对铂电极进行了首次自组装,用电化学方法研究了该电极的电化学性质.研究了对苯二酚在该电极上的电化学行为.实验结果表明,在0.1mol/LKCl溶液中,对苯二酚表现出一种准可逆行为,峰电流对称且峰电位差为80mV,峰电位较之裸铂电极上有较大的降低,峰电流较裸电极大大提高.利用该电极DPV法进行了对苯二酚的电化学测定,峰电流对其浓度在1×10-7~5×10-4mol/L之间成良好的线性关系,检出限为4×10-8mol/L.对对苯二酚模拟品进行了测定,回收率在96.6%-99.6%之间.  相似文献   

17.
利用L-半胱氨酸自组装膜修饰金电极(L-Cys,Au/SAMs), 在0.05mol/L H_2SO_4 底液中研究了 Na_2SeO_3 的电化学特性.在0.00~1.30 V (vs. SCE) 电位范围内对微量Na_2SeO_3进行循环伏安扫描,发现L-Cys, Au/SAMs修饰电极在峰电位0.89 V处有灵敏的Se的氧化溶出峰.通过比较裸金电极和修饰电极在Na_2SeO_3 溶液中的电化学特性发现,修饰电极通过巯基中的S与Na_2SeO_3发生氧化还原作用生成Se,且修饰电极对沉积在电极表面的Se的氧化过程具有催化作用.根据Na_2SeO_3在单分子膜上的电化学行为,提出了单分子膜中硫(Au-S)与Se(Ⅳ)作用生成Se的反应机理、Se电化学催化氧化机理及巯基化合物通过生成纳米硒生物吸收Se的类生物膜模型.  相似文献   

18.
铂纳米颗粒修饰直立碳纳米管电极的葡萄糖生物传感器   总被引:1,自引:0,他引:1  
基于Pt纳米颗粒修饰直立的碳纳米管电极制备了葡萄糖生物传感器.铂纳米颗粒是利用电位脉冲沉积法修饰到直立碳纳米管上的,可以增强电极对酶反应过程当中产生的过氧化氢的催化行为.用扫描电镜和透射电镜观察了直立碳纳米管在修饰Pt纳米颗粒前后的形态.该酶电极对葡萄糖的氧化表现出很好的响应,线性范围为1×10-5~7×10-3mol/L,响应时间小于5s,并且有很好的重现性.  相似文献   

19.
A novel strategy to fabricate a hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide nanocomposites/cysteamine-modified gold (Au) electrode was reported. The chitosan-graphene oxide nanocomposites were first assembled on a cysteamine-modified Au electrode to produce chitosan-graphene oxide/cysteamine/Au electrode. Then Ag nanoparticles were electrodeposited on the modified Au electrode and formed Ag nanoparticles/chitosan-graphene oxide/cysteamine/Au electrode. The chitosan-graphene oxide nanocomposites and the electrodeposited Ag nanoparticles were characterized by atomic force microscopy and scanning electron microscopy. The results showed the Ag nanoparticles were uniformly dispersed on the chitosan-graphene oxide/cysteamine/Au electrode. The cyclic voltammagrams and amperometric method were used to evaluate electrocatalytic properties of the Ag nanoparticles/chitosan-graphene oxide/cysteamine/Au electrode. The results showed that the modified electrode displayed good electrocatalytic activity to the reduction of hydrogen peroxide with a detection limit of 0.7 μM hydrogen peroxide based on a signal-to-noise ratio of 3. The sensor has good reproducibility, wide linear range, and long-term stability.  相似文献   

20.
Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号