首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we explore the electrocatalytic activity of nanocomposites of reduced sulphur doped graphene oxide nanosheets (rSDGONS) and cobalt phthalocyanine (CoPc) or cobalt tetra amino phthalocyanine (CoTAPc) towards hydrogen peroxide. Transmission electron microscopy, scanning electron microscopy, X‐ray photon spectroscopy, X‐ray diffraction, chronoamperometry, linear scan voltammetry and cyclic voltammetry were used to characterize the nanocomposites. Nanosized CoPc showed superior (in terms of currents) electrocatalytic oxidation and reduction of hydrogen peroxide compared to CoTAPc nanoparticles (CoTAPc NP ). The lowest detection limit was obtained for hydrogen peroxide oxidation on electrodes modified with CoPc NP ‐rSDGONS at 1.49 µM. The same electrode gave a high adsorption equilibrium constant of 1.27×103 mol?1 and a Gibbs free energy of ?17.71 kJ/mol, indicative of a spontaneous reaction on the electrode surface.  相似文献   

2.
Silver nanoparticles (narrowly dispersed in diameter) were electrodeposited on carbon ionic liquid electrode (CILE) surface using a two‐step potentiostatic method. Potentiostatic double pulse technique was used as a suitable and simple method for controlling the size and morphologies of silver nanoparticles electrodeposited on CILE. The obtained silver nanoparticles deposited on CILE surface showed excellent electrocatalytic activity (low overpotential of ?0.35 V vs. Ag/AgCl) towards reduction of hydrogen peroxide. A linear dynamic range of 2–200 μM with an experimental detection limit of 0.7 μM (S/N=3) and reproducibility of 4.1% (n=5) make the constructed sensor suitable for peroxide determination in aqueous solutions.  相似文献   

3.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

4.
A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.  相似文献   

5.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

6.
A third-generation hydrogen peroxide biosensor was prepared by immobilizing horseradish peroxidase (HRP) on a gold electrode modified with silver nanoparticles. A freshly-cleaned gold electrode was first immersed in a cysteamine–ethanol solution, and then silver nanoparticles were immobilized on the cysteamine monolayer, and finally HRP was adsorbed onto the surfaces of the silver nanoparticles. This self-assemble process was examined via atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited an excellent electrocatalytic response toward the reduction of hydrogen peroxide. The linear range of the biosensor was 3.3 M to 9.4 mM, and the detection limit was estimated to be 0.78 M. Moreover, the biosensor exhibited a fast response, high sensitivity, good reproducibility, and long-term stability.  相似文献   

7.
A strategy to fabricate a hydrogen peroxide (HP) sensor is developed by electrodepositing silver nanoparticles (Ag NPs) on a modified glassy carbon electrode (GCE) with a zinc oxide (ZnO) film. The Ag NPs/ZnO/GCE has been characterized by scanning electron microscopy, cyclic voltammetry, and chronoamperometry. It has been found that the Ag NPs synthesized in the presence of ZnO film provide an electrode with enhanced sensitivity and excellent stability. The sensitivity to HP is enhanced 3-fold by using Ag NPs/ZnO/GCE compared to Ag NPs/GCE. The HP sensor exhibits good linear behavior in the concentration range 2 µM to 5.5 mM for the quantitative analysis of HP with a detection limit of 0.42 µM (S/N?=?3).  相似文献   

8.
A novel nonenzymatic hydrogen peroxide sensor was successfully fabricated based on the Se/Pt nanocomposites. The nanocomposites were constructed via a simple solvethermal method, and were confirmed by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the nanocomposites at glassy carbon electrode (GCE). The results indicated that the Se/Pt nanocomposites exhibited excellent electrocatalytic activity to the reduction of H2O2 and could be used to construct a hydrogen peroxide amperometric sensor with a low detection limit and wide responding range.  相似文献   

9.
Electrodeposition of manganese oxides film onto the cheap pencil graphite electrode using potassium permanganate precursor provides the good alternative method of fabrication the low cost hydrogen peroxide sensor. Effect of deposition potential, deposition time and concentration of potassium permanganate were investigated. The modified electrode displayed electrocatalytic activity towards the oxidation of hydrogen peroxide in alkaline medium. Amperometric detection of hydrogen peroxide in ammonium buffer pH 9.0 is possible at the operation potential of +0.50V vs Ag/AgCl instead of over +0.80V vs Ag/AgCl with unmodified electrode. Linear concentration range between 0.50-138ppm of hydrogen peroxide was obtained with a detection limit of 0.28ppm.  相似文献   

10.
将含有氯化金的强酸性水溶液作为水相与Triton X-100、正己醇、正己烷组成反相微乳液体系, 并以该微乳液构成电极/反相微乳液电极系统, 利用电沉积方法成功地制备出纳米Au镀层. 循环伏安和交流阻抗对反相微乳液体系电沉积过程的研究发现, 微乳液中Au(III)的还原为完全不可逆过程, 其电化学反应的阻抗值约为具有相同表观浓度氯化金水溶液体系的5.5倍. SEM研究结果表明, 利用微乳液体系电沉积获得的金镀层由纳米Au颗粒组成, 直径为50 nm左右. 所制备的纳米Au修饰电极由于具有较大的比表面积, 其电化学性能优于纯Au电极, 该电极在酸性条件下有较好的析氢性能, 在碱性条件对丙三醇有较好的电催化氧化性能.  相似文献   

11.
Silver (Ag) nanoparticles were directly electrodeposited on multi-walled carbon nanotubes (MWCNT) in AgNO3/LiNO3 containing EDTA (ethylenediaminetetraacetic acid). The structure and nature of the resulting Ag/MWNT composite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the distribution shape of Ag nanoparticles was found to be dependent on the presence of EDTA. The modified electrode showed excellent electrocatalytic activity to redox reaction of hydrogen peroxide and the mechanism of hydrogen peroxide was partly reversible procession with oxidation and reduction peaks at 0.77 and -0.83 V, respectively. The oxidation and reduction peak currents were linearly related to hydrogen peroxide concentration in the range of 1×10^-6-3×10^-4 and 1 ×10^-8-7× 10^-4 mol·L^-1 with correlation coefficients of 0.996 and 0.986, and 3s-detection limit of 9 × 10^-7 and 7 × 10^-9 mol·L^-1.  相似文献   

12.
The direct electrocatalytic reduction of hydrogen peroxide in alkaline medium at a carbon ionic liquid electrode modified with copper oxide nanoparticles was investigated. The electrode was prepared by mixing graphite particles, ionic liquid (n-octylpyridium hexafluorophosphate) and copper oxide nanoparticles. Unlike the film-modified electrode, the fabrication of this electrode is simple and highly reproducible. The combination of the good conductivity of the ionic liquid and the high catalytic activity of the nanoparticles resulted in an electrode with attractive properties for the determination of hydrogen peroxide. The concentration of NaOH and the loading of copper oxide nanoparticles were optimized. The linear range for the determination of hydrogen peroxide is from 1.0 μM to 2.5 mM, the detection limit is 0.5 μM. High stability, sensitivity, selectivity and reproducibility, fast response, the ease of preparation, and surface renewal made the electrode well suitable for the determination of hydrogen peroxide in real samples.  相似文献   

13.
A novel non‐enzymatic sensor based on Ag/MnOOH nanocomposites was developed for the detection of hydrogen peroxide (H2O2). The H2O2 sensor was fabricated by immobilizing Ag/MnOOH nanocomposites on a glassy carbon electrode (GCE). The morphology and composition of the sensor surface were characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and X‐ray diffraction spectroscopy. The electrochemical investigation of the sensor indicates that it possesses an excellent electrocatalytic property for H2O2, and could detect H2O2 in a linear range from 5.0 µM to 12.8 mM with a detection limit of 1.5 µM at a signal‐to‐noise ratio of 3, a response time of 2 s and a sensitivity of 32.57 µA mM?1 cm?2. Additionally, the sensor exhibits good anti‐interference. The good analytical performance, low cost and straightforward preparation method made this novel electrode material promising for the development of effective non‐enzymatic H2O2 sensor.  相似文献   

14.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

15.
Ferritin was immobilized on a glassy carbon electrode with electrodeposited cobalt oxide nanoparticles, and its direct electron transfer behavior was studied. It exhibits a pair of redox peaks due to direct electron transfer between ferritin and the nanoparticles. Electrochemical parameters including the formal potential (E0??), the charge transfer coefficient (??), and the apparent heterogeneous electron transfer rate constant (ks) were determined. The sensor displays excellent biocatalytic activity in terms of reduction of hydrogen peroxide, and this was applied to electrochemical sensing of hydrogen peroxide.
Figure
In this work, cobalt oxide nanoparticles were electrodeposited on the surface of an electrode for immobilization of ferritin molecules to prepare hydrogen peroxide biosensor. The immobilized protein molecules still preserve their biological activities and have great capability in catalyzing the reduction of hydrogen peroxide.  相似文献   

16.
We report on a new type of indium tin oxide (ITO) electrode for sensing ascorbic acid (AA). The ITO film was modified with gold-platinum alloy nanoparticles (Au-Pt NPs) functionalized with a self-assembled film of L-cysteine. The Au-Pt NPs were electrodeposited on the ITO film and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. A cyclic voltammetric study revealed that the electrode exhibits excellent electrocatalytic activity towards the oxidation of AA. The calibration plot for AA is linear over the concentration range from 2 to 400???M with a correlation coefficient of 0.9991. The detection limit of AA is 1???M.
Figure
Gold-platinum nanoparticles were electrodeposited on the indium tin oxide electrode surface and then self-assembled with cysteine. The resulting sensor exhibited excellent electrocatalytic activity towards the oxidation of ascorbic acid. The modified electrode is high sensitivity, easy fabrication, mediator-free and low cost.  相似文献   

17.
Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.  相似文献   

18.
Platinum nanoparticles were electrodeposited onto a film of dihexadecyl hydrogen phosphate deposited on a glassy carbon electrode (GCE) and modified with dispersed acetylene black. Scanning electron microscopy and electrochemical impedance spectroscopy revealed that this nanocomposite has a uniform nanostructure and a large surface area that enables fast electron-transfer kinetics. The modified GCE showed high electrocatalytic activity for the oxidation of nitric oxide (NO). Under optimal conditions, the oxidation peak current of nitric oxide is linearly related to the concentration of NO in the concentration range between 0.18 and 120?μM, and the detection limit is as low as 50?nM (at an S/N of 3). The modified electrode was successfully applied to sensing of NO as released from rat liver.
Figure
Acetylene black (AB) was dispersed with dihexadecyl hydrogen phosphate (DHP) and modified on the surface of glassy carbon electrode (GCE) to fabricate AB/GCE, after activating in NaOH solution, the AB film became more porous and loosened, then through electrodepositing Pt nanoparticles (PtNPs) on the activated AB film, PtNP/AB/GCE was obtained, which was denoted as NO electrochemical sensor.  相似文献   

19.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

20.
A novel amperometric biosensor was fabricated for glucose sensing based on the precursor of a tailor-designed platinum nanoparticle (nano-Pt) modified polycrystalline gold disk-microelectrode (poly-Au DME). The platinum nanoparticles were electrodeposited onto poly-Au DME modified with a submonolayer (Ausm) of cysteine (nano-Pt/Ausm), and its resulting electrocatalytic activity was evaluated by chronoamperometry. By means of self-assembly technique, cysteamine was grafted on cysteine-modified nano-Pt/Ausm to introduce sulfhydryl groups for immobilization of gold nanoparticles (nano-Au) and adsorption of glucose oxidase (GOD, which acts as an enzyme template) at nano-Au. In order to improve the anti-interference ability, diethylenetriaminepentaacetic acid (DTPA), with negatively charged functional groups, was anchored on the modified microelectrode. This well-prepared biosensor shows remarkable electrocatalytic activity and selectivity towards hydrogen peroxide ejected from enzymatic activities, with a pronounced oxidation current at a low positive potential of 0.4 V (vs. Ag/AgCl). Glucose is chronoamperometrically determined, and the linear range is between 0.1 and 50 μM, with a detection limit of 0.01 μM. The response time is less than 5 s. In addition, it exhibits good reproducibility, strong stability, and less interference from other coexistent electroactive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号