首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We introduce the discrete (G′/G)‐expansion method for solving nonlinear differential–difference equations (NDDEs). As illustrative examples, we consider the differential–difference Burgers equation and the relativistic Toda lattice system. Discrete solitary, periodic, and rational solutions are obtained in a concise manner. The method is also applicable to other types of NDDEs. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 127‐137, 2012  相似文献   

2.
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.  相似文献   

3.
An application of the ‐expansion method to search for exact solutions of nonlinear partial differential equations is analyzed. This method is used for variants of the Korteweg–de Vries–Burger and the K(n,n)–Burger equations. The generalized ‐expansion method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exact traveling wave solutions of nonlinear partial differential equations. It is shown that the generalized ‐expansion method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear problems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
为得到量子Zakharov-Kuznetsov方程的一些新精确解,借助行波解的思想,结合齐次平衡原理和一类非线性常微分方程解的结构,利用扩展的(G'/G)展开方法,研究了其相应的更加丰富的精确解表达形式.新精确解的表达式主要由双曲函数、三角函数和有理数函数构成,出现了某些怪波解的情形.通过对比不同情况下解的形式,利用M...  相似文献   

5.
Nonlinear lattice differential equations (also known as differential‐difference equations) appear in many applications. They can be thought of as hybrid systems for the inclusion of both discrete and continuous variables. On the basis of an improved version of the basic (G′/G)‐expansion method, we focus our attention towards some Toda type lattice differential systems for constructing further exact traveling wave solutions. Our method provides not only solitary and periodic wave profiles but also rational solutions with more arbitrary parameters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
On the basis of the F‐expansion method with a new sub‐equation and Exp‐function method, an improved F‐expansion method is introduced. As illustrative examples, the exact solutions expressed by exponential function, hyperbolic function of Kudryashov–Sinelshchikov equation for arbitrary α,β are derived. Some previous results are extended. The method is straightforward, concise and is a promising and powerful method for other nonlinear evolution equations in mathematical physics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
利用推广的(G′/G)展开法,借助于计算机代数系统Mathematica,获得了(2+1)维BBM方程的丰富的显式行波解,分别以含两个任意参数的双曲函数、三角函数及有理函数表示.  相似文献   

8.
In this paper we employ a rational expansion to generalize Fan’s method for exact travelling wave solutions for nonlinear partial differential equations (PDEs). To verify the reliability of the proposed method, the generalized shallow water wave (GSWW) equation has been investigated as an example. Kinds of new exact travelling wave solutions of a rational form have been obtained. This indicates that the proposed method provides a more general result for exact solution of nonlinear equations.  相似文献   

9.
Based on the computerized symbolic, a new generalized tanh functions method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (PDES) in a unified way. The main idea of our method is to take full advantage of an auxiliary ordinary differential equation which has more new solutions. At the same time, we present a more general transformation, which is a generalized method for finding more types of travelling wave solutions of nonlinear evolution equations (NLEEs). More new exact travelling wave solutions to two nonlinear systems are explicitly obtained.  相似文献   

10.
In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.  相似文献   

11.
A new rational auxiliary equation method for obtaining exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. Its effectiveness is evinced by obtaining exact solutions of a generalized Zakharov system, some of which are new. It is shown that the G/G and the generalized projective Ricatti expansion methods are special cases of the auxiliary equation method. Further, due the solutions obtained, four other new and practicable rational methods are deduced.  相似文献   

12.
In this paper, an generalized Jacobi elliptic functions expansion method with computerized symbolic computation is used for constructing more new exact Jacobi elliptic functions solutions of the generalized coupled Hirota-Satsuma KdV system. As a result, eight families of new doubly periodic solutions are obtained by using this method, some of these solutions are degenerated to solitary wave solutions and triangular functions solutions in the limit cases when the modulus of the Jacobi elliptic functions m → 1 or 0, which shows that the applied method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial differential equations arising in mathematical physics.  相似文献   

13.
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh-function method, a new algebraic method is presented to obtain multiple travelling wave solutions for nonlinear wave equations. By using the method ,Ito‘s 5th-order and 7th-order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found. With modulus m→1 or m→0, these solutions degenerate into corresponding solitary wave solutions, shock wave solutions and trigonometric function solutions.  相似文献   

14.
In this paper, travelling wave solutions for the nonlinear dispersion Drinfel’d–Sokolov system (called D(m,n) system) are studied by using the Weierstrass elliptic function method. As a result, more new exact travelling wave solutions to the D(m,n) system are obtained including not only all the known solutions found by Xie and Yan but also other more general solutions for different parameters m,n. Moreover, it is also shown that the D(m,1) system with linear dispersion possess compacton and solitary pattern solutions. Besides that, it should be pointed out that the approach is direct and easily carried out without the aid of mathematical software if compared with other traditional methods. We believe that the method can be widely applied to other similar types of nonlinear partial differential equations (PDEs) or systems in mathematical physics.  相似文献   

15.
In this paper, we investigate exact traveling wave solutions of the fourth‐order nonlinear Schrödinger equation with dual‐power law nonlinearity through Kudryashov method and (G'/G)‐expansion method. We obtain miscellaneous traveling waves including kink, antikink, and breather solutions. These solutions may be useful in the explanation and understanding of physical behavior of the wave propagation in a highly dispersive optical medium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an extended Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the exact periodic solutions of some polynomials or nonlinear evolution equations. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in nonlinear mathematical physics. As a result, many exact travelling wave solutions are obtained which include new solitary or shock wave solution and envelope solitary and shock wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

17.
An extended mapping method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for nonlinear evolution equations arising in physics, namely, generalized Zakharov Kuznetsov equation with variable coefficients. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations with variable coefficients arising in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

18.
In this paper, a new auxiliary equation expansion method and its algorithm is proposed by studying a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Being concise and straightforward, the method is applied to the generalized derivative Schrödinger equation. As a result, some new exact travelling wave solutions are obtained which include bright and dark solitary wave solutions, triangular periodic wave solutions and singular solutions. This algorithm can also be applied to other nonlinear wave equations in mathematical physics.  相似文献   

19.
In this article, we establish new travelling wave solutions for the nonlinear loaded (3+1)-dimensional version of the Benjamin-Ono equation by the functional variable method. The performance of this method is reliable and effective and the method provides the exact solitary wave solutions and periodic wave solutions. The solution procedure is very simple and the traveling wave solutions are expressed by hyperbolic functions and trigonometric functions. After visualizing the graphs of the soliton solutions and the periodic wave solutions, the use of distinct values of random parameters is demonstrated to better understand their physical features. It has been shown that the method provides a very effective and powerful mathematical tool for solving nonlinear equations in mathematical physics.  相似文献   

20.
利用一种改进的统一代数方法将构造(2+1)维ZK MEW((2+1)-dimensionalZakharov-Kuznetsovmodifiedequalwidth)方程精确行波解的问题转化为求解一组非线性的代数方程组.再借助于符号计算系统Mathematica求解所得到的非线性代数方程组,最终获得了方程的多种形式的精确行波解.其中包括有理解,三角函数解,双曲函数解,双周期Jacobi椭圆函数解,双周期Weierstrass椭圆形式解等.并给出了部分解的图形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号