首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modeling reaction diffusion for such branches of sciences. In this article a numerical method for solving the one‐dimensional hyperbolic telegraph equation is presented. The method is based upon Legendre multiwavelet approximations. The properties of Legendre multiwavelet are first presented. These properties together with Galerkin method are then utilized to reduce the telegraph equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, using the exp-function method we obtain some new exact solutions for (1+1)-dimensional and (2+1)-dimensional Kaup–Kupershmidt (KK) equations. We show figures of some of the new solutions obtained here. We conclude that the exp-function method presents a wider applicability for handling nonlinear partial differential equations.  相似文献   

5.
In this work, Exp‐function method is used to solve three different seventh‐order nonlinear partial differential KdV equations. Sawada–Kotera–Ito, Lax and Kaup–Kupershmidt equations are well known and considered for solve. Exp‐function method can be used as an alternative to obtain analytic and approximate solutions of different types of differential equations applied in engineering mathematics. Ultimately this method is implemented to solve these equations and convenient and effective solutions are obtained. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The shifted Legendre collocation method is used to solve the two‐dimensional fractional order aerosol equation with initial and boundary conditions. The solution profile of the equation is presented graphically for different cases. The important feature of the article is graphical exhibitions of the effect of the size of the aerosol particles and also the temporal derivative on the solution profile. The salient feature of the article is the demonstration of lower variation of mass concentration with the change in time level in fractional order systems than that in integer order system. A drive has been taken towards the tabular and pictorial presentations of a comparison of the numerical solution of our proposed method with an analytical solution of an existing problem through error analysis which conforms super‐linearly convergence rate of the proposed method to validate its efficiency and effectiveness.  相似文献   

7.
Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup–Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup–Kupershmidt hierarchy, we introduce a trigonal curve $\mathcal {K}_{m-1}$ and present the corresponding Baker–Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup–Kupershmidt flows. With the aid of the properties of the Baker–Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann–Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker–Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup–Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.  相似文献   

8.
This paper aims to formulate the fractional quasi‐inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz‐Kaup‐Newell‐Segur (AKNS) method be applied to the space–time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi‐conservation laws for the considered fractional equations from the defined fractional quasi AKNS‐like system. The nonlinear fractional differential equations to be studied are the space–time fractional versions of the Kortweg‐de Vries equation, modified Kortweg‐de Vries equation, the sine‐Gordon equation, the sinh‐Gordon equation, the Liouville equation, the cosh‐Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.  相似文献   

9.
In this paper, shifted Legendre polynomials will be used for constructing the numerical solution for a class of multiterm variable‐order fractional differential equations. In the proposed method, the shifted Legendre operational matrix of the fractional variable‐order derivatives will be investigated. The fundamental problem is reduced to an algebraic system of equations using the constructed matrix and the collocation technique, which can be solved numerically. The error estimate of the proposed method is investigated. Some numerical examples are presented to prove the applicability, generality, and accuracy of the suggested method.  相似文献   

10.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a new extended Riccati equation rational expansion method is suggested to constructing multiple exact solutions for nonlinear evolution equations. The validity and reliability of the method is tested by its application to the dispersive long wave system and the Broer–Kaup–Kupershmidt system. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

12.
This paper presents general framework for solving the nth‐order integro‐differential equation using homotopy analysis method (HAM) and optimal homotopy asymptotic method (OHAM). OHAM is parameter free and can provide better accuracy over the HAM at the same order of approximation. Furthermore, in OHAM the convergence region can be easily adjusted and controlled. Comparison, via two examples, between our solution using HAM and OHAM and the exact solution shows that the HAM and the OHAM are effective and accurate in solving the nth‐order integro‐differential equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

14.
This article is devoted to solving numerically the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation that has several applications in physics and applied sciences. First, the time derivative is approximated by using a finite difference formula. Afterward, the stability and convergence analyses of the obtained time semi‐discrete are proven by applying the energy method. Also, it has been demonstrated that the convergence order in the temporal direction is O(dt) . Second, a fully discrete formula is acquired by approximating the spatial derivatives via Legendre spectral element method. This method uses Lagrange polynomial based on Gauss–Legendre–Lobatto points. An error estimation is also given in detail for full discretization scheme. Ultimately, the GBBMB equation in the one‐ and two‐dimension is solved by using the proposed method. Also, the calculated solutions are compared with theoretical solutions and results obtained from other techniques in the literature. The accuracy and efficiency of the mentioned procedure are revealed by numerical samples.  相似文献   

15.
In this paper, we consider the analytical solutions of fractional partial differential equations (PDEs) with Riesz space fractional derivatives on a finite domain. Here we considered two types of fractional PDEs with Riesz space fractional derivatives such as Riesz fractional diffusion equation (RFDE) and Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second‐order space derivative with the Riesz fractional derivative of order α∈(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first‐order and second‐order space derivatives with the Riesz fractional derivatives of order β∈(0,1] and of order α∈(1,2] respectively. Here the analytic solutions of both the RFDE and RFADE are derived by using modified homotopy analysis method with Fourier transform. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method. Here the space fractional derivatives are defined as Riesz fractional derivatives. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, the fractional variational iteration method is employed for computing the approximate analytical solutions of degenerate parabolic equations with fractional time derivative. The time‐fractional derivatives are described by the use of a new approach, the so‐called Jumarie modified Riemann–Liouville derivative, instead in the sense of Caputo. The approximate solutions of our model problem are calculated in the form of convergent series with easily computable components. Moreover, the numerical solution is compared with the exact solution and the quantitative estimate of accuracy is obtained. The results of the study reveal that the proposed method with modified fractional Riemann–Liouville derivatives is efficient, accurate, and convenient for solving the fractional partial differential equations in multi‐dimensional spaces without using any linearization, perturbation or restrictive assumptions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the Legendre spectral collocation method (LSCM) is applied for the solution of the fractional Bratu's equation. It shows the high accuracy and low computational cost of the LSCM compared with some other numerical methods. The fractional Bratu differential equation is transformed into a nonlinear system of algebraic equations for the unknown Legendre coefficients and solved with some spectral collocation methods. Some illustrative examples are also given to show the validity and applicability of this method, and the obtained results are compared with the existing studies to highlight its high efficiency and neglectable error.  相似文献   

18.
In this paper, a numerical procedure involving Chebyshev wavelet method has been implemented for computing the approximate solution of Riesz space fractional sine‐Gordon equation (SGE). Two‐dimensional Chebyshev wavelet method is implemented to calculate the numerical solution of space fractional SGE. The fractional SGE is considered as an interpolation between the classical SGE (corresponding to α = 2) and nonlocal SGE (corresponding to α = 1). As a consequence, the approximate solutions of fractional SGE obtained by using Chebyshev wavelet approach were compared with those derived by using modified homotopy analysis method with Fourier transform. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana–Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple.  相似文献   

20.
By using the Chen et al. ansatz [Chen Y, Wang Q, Lang Y. Naturforsch 2005;60a:127] and by modifying our extended Fan sub-equation method [Yomba E. Phys Lett A 2005;336:463]. We have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerate Jacobi elliptic wave function-like solutions for the (2+1)-dimensional Broer–Kaup–Kupershmidt equation. The most important achievement of this method lies on the fact that we have succeeded in one move to give all the solutions which can previously be obtained by application of at least four methods (the method using the Riccati equation, or the first kind elliptic equation, or the auxiliary ordinary equation, or the generalized Riccati equation as mapping equation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号