首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we extend the basic Exp‐function method to nonlinear lattice differential equations for constructing multi‐wave and rational solutions for the first time. We consider a differential‐difference analogue of the Korteweg–de Vries equation to elucidate the solution procedure. Our approach is direct and unifying in the sense that the bilinear formalism of the equation studied becomes redundant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
On the basis of the F‐expansion method with a new sub‐equation and Exp‐function method, an improved F‐expansion method is introduced. As illustrative examples, the exact solutions expressed by exponential function, hyperbolic function of Kudryashov–Sinelshchikov equation for arbitrary α,β are derived. Some previous results are extended. The method is straightforward, concise and is a promising and powerful method for other nonlinear evolution equations in mathematical physics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, the Exp‐function method is applied to nonlinear Burgers equation and special fifth‐order partial differential equation. Using this method, we obtain exact solutions for these equations. The method is straightforward and concise, and its applications are promising. This method can be used as an alternative to obtain analytical and approximate solutions of different types of nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We will propose a unified algebraic method to construct Jacobi elliptic function solutions to differential–difference equations (DDEs). The solutions to DDEs in terms of Jacobi elliptic functions sn, cn and dn have a unified form and can be presented through solving the associated algebraic equations. To illustrate the effectiveness of this method, we apply the algorithm to some physically significant DDEs, including the discrete hybrid equation, semi‐discrete coupled modified Korteweg–de Vries and the discrete Klein–Gordon equation, thereby generating some new exact travelling periodic solutions to the discrete Klein–Gordon equation. A procedure is also given to determine the polynomial expansion order of Jacobi elliptic function solutions to DDEs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Based on the F‐expansion method and Exp‐function method, an improved F‐expansion method is introduced. As illustrative examples, the exact solutions expressed by exponential function, hyperbolic functions, logarithmic function, and other type of functions for the Zhiber–Shabat equation are derived. Some previous results are extended. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The motion of the self‐gravitational gaseous stars can be described by the Euler–Poisson equations. For some velocity fields and entropy functions that solve the conservation of mass and energy, we consider the existence of stationary solutions of Euler–Poisson equations. Under various restriction to the strength of velocity field, different assumptions on the isentropic function and adiabatic exponent, we get the existence, multiplicity and uniqueness of the stationary solutions to the Euler–Poisson system, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the meshless local Petrov–Galerkin approximation is proposed to solve the 2‐D nonlinear Klein–Gordon equation. We used the moving Kriging interpolation instead of the MLS approximation to construct the meshless local Petrov–Galerkin shape functions. These shape functions possess the Kronecker delta function property. The Heaviside step function is used as a test function over the local sub‐domains. Here, no mesh is needed neither for integration of the local weak form nor for construction of the shape functions. So the present method is a truly meshless method. We employ a time‐stepping method to deal with the time derivative and a predictor–corrector scheme to eliminate the nonlinearity. Several examples are performed and compared with analytical solutions and with the results reported in the extant literature to illustrate the accuracy and efficiency of the presented method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The main purpose of this paper is concerned with blow‐up smooth solutions to Navier–Stokes–Poisson (N‐S‐P) equations. First, we present a sufficient condition on the blow up of smooth solutions to the N‐S‐P system. Then we construct a family of analytical solutions that blow up in finite time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
Based on a Riccati equation and one of its new generalized solitary solutions constructed by the Exp‐function method, new analytic solutions with free parameters and arbitrary functions of a (2 + 1)‐dimensional variable‐coefficient Broer–Kaup system are obtained. These free parameters and arbitrary functions reveal that the (2 + 1)‐dimensional variable‐coefficient Broer–Kaup system has rich spatial structures. As an illustrative example, two new spatial structures are shown by setting the arbitrary functions as different Jacobi elliptic functions. Compared with tanh‐function method and its extensions, the method proposed in this paper is more powerful and it can be applied to other nonlinear evolution equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a shifted Jacobi–Gauss collocation spectral algorithm is developed for solving numerically systems of high‐order linear retarded and advanced differential–difference equations with variable coefficients subject to mixed initial conditions. The spatial collocation approximation is based upon the use of shifted Jacobi–Gauss interpolation nodes as collocation nodes. The system of differential–difference equations is reduced to a system of algebraic equations in the unknown expansion coefficients of the sought‐for spectral approximations. The convergence is discussed graphically. The proposed method has an exponential convergence rate. The validity and effectiveness of the method are demonstrated by solving several numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study the zero viscosity and capillarity limit problem for the one‐dimensional compressible isentropic Navier–Stokes–Korteweg equations when the corresponding Euler equations have rarefaction wave solutions. In the case that either the effects of initial layer are ignored or the rarefaction waves are smooth, we prove that the solutions of the Navier–Stokes–Korteweg equation with centered rarefaction wave data exist for all time and converge to the centered rarefaction waves as the viscosity and capillarity number vanish, and we also obtain a rate of convergence, which is valid uniformly for all time. These results are showed by a scaling argument and elementary energy analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The group analysis method is applied to the two‐dimensional nonlinear Klein–Gordon equation with time‐varying delay. Determining equations for equations with a time‐varying delay are derived. A complete group classification of the studied equation with respect to the function involved into the equation is obtained. All admitted Lie algebras are classified. By using the classifications, representations of all invariant solutions are found. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
《Mathematische Nachrichten》2018,291(4):652-668
Hain–Lüst equations appear in magnetohydrodynamics. They are Sturm–Liouville equations with coefficients depending rationally on the eigenvalue parameter. In this paper such equations are connected with a 2 × 2 system of differential equations, where the dependence on the eigenvalue parameter is linear. By means of this connection Weyl's fundamental limit‐point/limit‐circle classification is extended to a general setting of Hain–Lüst‐type equations.  相似文献   

17.
In this paper, the reproducing kernel Hilbert space method (RKHSM) is applied to neutral functional–differential equations with proportional delays. Its approximate solution is obtained by truncating the n‐term of exact solution. Some examples are displayed to demonstrate the computation efficiency of the method. We also compare the performance of the method with a particular Runge–Kutta method, a one‐leg θ‐method and variational iteration method. Experiment dates indicate that the RKHSM is an accurate and efficient method to solve neutral functional–differential equations with proportional delays. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This study presents a robust modification of Chebyshev ? ‐weighted Crank–Nicolson method for analyzing the sub‐diffusion equations in the Caputo fractional sense. In order to solve the problem, by discretization of the sub‐fractional diffusion equations using Taylor's expansion a linear system of algebraic equations that can be analyzed by numerical methods is presented. Furthermore, consistency, convergence, and stability analysis of the suggested method are discussed. In this framework, compact structures of sub‐diffusion equations are considered as prototype examples. The main advantage of the proposed method is that, it is more efficient in terms of CPU time, computational cost and accuracy in comparing with the existing ones in open literature.  相似文献   

19.
The critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号