首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250 K, in addition to the well-investigated dielectric relaxation close to 100 K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers.  相似文献   

2.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

3.
La0.5Bi0.5MnO3 ceramics with a single phase were prepared by a solid-state reaction method, and their dielectric properties were characterized. Two dielectric relaxations with a giant dielectric constant were identified in the temperature range from 125 to 350 K. The electron hopping between Mn3+ and Mn4+ was found to be the origin of the dielectric relaxation at low temperatures (125–200 K) with an activation energy of 0.18 eV. The high temperature (200–350 K) dielectric relaxation can be attributed to the conduction.  相似文献   

4.
The conducting polyaniline/sodium metavenadate (PANI/NaVO3) composites were synthesized by single step in situ polymerization technique by placing finely grinded powder of NaVO3 during the polymerization of aniline. The formation of mixed phases of the polymer together with the conducting emeraldine salt phase was confirmed by spectroscopic techniques like FTIR. SEM images indicated a systematic morphological variation of particles aggregated in the composite matrix as compared to the pristine PANI. AC conductivity and dielectric behavior of these composites were investigated in the frequency range 50 Hz to 5 MHz. It is found that AC conductivity obeyed the power law index and the variation of conductivity with wt% of NaVO3 could be related to conductivity relaxation phenomenon. These composites have shown high dielectric constant, which is related to polarization. It is seen that both dielectric constant and dielectric loss decrease with increase in frequency. Variations in measured parameters of AC response with increasing frequency of these composites are found to follow systematic trends that are similar to those observed with temperature and doping.  相似文献   

5.
Electrical impedance measurements of Na3H(SO4)2 were performed as a function of both temperature and frequency. The electrical conductivity and dielectric relaxation have been evaluated. The temperature dependence of electrical conductivity reveals that the sample crystals transformed to the fast ionic state in the high temperature phase. The dynamical disordering of hydrogen and sodium atoms and the orientation of SO4 tetrahedra results in fast ionic conductivity. In addition to the proton conduction, the possibility of a Na+ contribution to the conductivity in the high temperature phase is proposed. The frequency dependence of AC conductivity is proportional to ωs. The value of the exponent, s, lies between 0.85 and 0.46 in the room temperature phase, whereas it remains almost constant, 0.6, in the high-temperature phase. The dielectric dispersion is examined using the modulus formalism. An Arrhenius-type behavior is observed when the crystal undergoes the structural phase transition.  相似文献   

6.
Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF?CTrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50?vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50?vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (??340?K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.  相似文献   

7.
Ceramic samples of (1−x)SrTiO3-xSrMg1/3Nb2/3O3 and (1−x)SrTiO3-xSrSc1/2Ta1/2O3 were prepared, and their dielectric properties were studied at x=0.005–0.15 and 0.01–0.1, respectively, at frequencies 10 Hz–1 MHz and at temperatures 4.2–350 K. A giant dielectric relaxation was observed in the temperature range 150–300 K, and not so strong but well-developed relaxation was found in the temperature range 20–90 K. The activation energy U and the relaxation time τ0 were determined to be 0.21–0.3 eV and from 10−11 to 10−12 s for the high-temperature relaxation and 0.01–0.02 eV and 10−8–10−10 s for the low-temperature relaxation, respectively. The additional local charge compensation of the heterovalent impurities Mg2+ and Nb5+ (or Sc3+ and Ta5+) by free charge carriers or the host ion vacancies is suggested to be the underlying physical mechanism of the relaxation phenomena. On the basis of this mechanism, the Maxwell-Wagner model and the model of reorienting dipole centers Mg2+ (or Sc3+) associated with the oxygen vacancy are proposed to explain the high-temperature relaxation with some arguments in favor of the latter model. The polaron-like model with the Nb5+-Ti3+ center is suggested as the origin of the low-temperature relaxation. The reasons for the absence of ferroelectric phase transitions in the solid solutions under study are also discussed. From Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 1948–1957. Original English Text Copyright ? 2002 by Lemanov, Sotnikov, Smirnova, Weihnacht. This article was submitted by the authors in English.  相似文献   

8.
A power law used to describe the AC conductivity from 299 to 393 K of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58 led to fractional exponent values ranging from 1.08 to 0.91, depending on structural changes induced on temperature variation [B. Louati, M. Gargouri, K. Guidara and T. Mhiri, J. Phys. Chem. Solids 66 (2005) 762]. In the present note, we suggest that the fractional law exhibits features of lattice relaxation. Despite the structural changes, the parameters of the power law are mutually interconnected to yield a temperature independent phenomenon. Such behavior is probably of general validity and characterizes the universal fractional dispersion of the AC conductivity, as it was also observed in glasses of different composition.  相似文献   

9.
The crystal structure and dielectric properties of 0.95K0.5Na0.5NbO3-0.05BaZrO3 (KNN-BZ) ceramic have been investigated by X-ray diffraction and dielectric measurement. A rhombohedral distortion was caused and the dielectric permittivity near Curie temperature was significantly enhanced by introducing BZ into KNN. The dielectric and conductivity properties of the sample were studied by using AC impedance spectroscopy and universal dielectric relaxation law in detail. The typical high-temperature dielectric relaxation process was confirmed to be related to the oxygen vacancies inside the ceramic. The effect of lattice distortion on the activation energy for oxygen vacancy migration in KNN-BZ was discussed by comparing with KNN and KNN-BaTiO3.  相似文献   

10.
Solid solutions of bismuth layered (Bi2O3)(BaxMo1−xO3) (0.2≤x≤0.8, x is in step of 0.2) ceramics were prepared by conventional solid-state reaction of the constitutive oxides at optimized temperatures with a view to study its electrical properties. Powder X-ray diffraction has been employed for physical characterization and an average grain size of ∼16 to 22 nm was obtained. XRD study reveals the single phase structure of the samples. Dielectric properties such as dielectric constant (ε′), dielectric loss (tanδ) and ac electrical conductivity (σac) of the prepared ceramics sintered at various temperatures in the frequency range 101–107 Hz have been studied. A strong dispersion observed in the dielectric properties shows the relaxor type behavior of the ceramic. The presence of maxima in the dielectric permittivity spectra indicates the ferroelectric behavior of the samples. Impedance plots (Cole–Cole plots) at different frequencies and temperatures were used to analyze the electric behavior. The value of grain resistance increases with the increase in Ba ion concentration. The conductivity mechanism shows a frequency dependence, which can be ascribed to the space charge mainly due to the oxygen vacancies. The relaxation observed for the M″ (ω) or Z″ (ω) curves is correlated to both localized and long range conduction. A single ‘master curve’ for the normalized plots of all the modulus isotherms observed for a given composition indicates that the conductivity relaxation is temperature independent.  相似文献   

11.
采用固相烧结法合成了单相巨介电常数氧化物CaCu3Ti4O12(CCTO).用阻抗分析仪分析了10—420 K温度范围内的介电频谱和阻抗谱特性,并结合ZVIEW软件进行了模拟.结果表明:温度高于室温时,频谱出现两个明显的弛豫台阶,低频弛豫介电常数随温度升高而显著增大,表现出热离子极化特点;温度低于室温时,频谱表现出类德拜弛豫,且高、低平台介电常数值基本不随温度变化,表现出界面极化特点和较好的温度稳定性.频谱中依次出现的介电弛豫对应于阻抗谱中 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 介电频谱 阻抗谱 Cole-Cole半圆弧  相似文献   

12.
Highly-oriented CaCu3Ti4O12 (CCTO) thin films deposited directly on SrTiO3 (1 0 0) substrates have been developed successfully using a chemical solution coating method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were employed to characterize the structure and the morphology. It was observed that the CCTO thin films had the 1 μm × 1 μm domain-like microstructure that consists of compact grains of about 0.1 μm in size. The cross sectional SEM image shows that the CCTO grains grow regularly close to the clear interface between the CCTO film and the SrTiO3 substrate. The result was discussed in terms of lattice mismatch between CCTO and SrTiO3.  相似文献   

13.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

14.
Polycrystalline sample with (Na0.5Bi0.5)ZrO3 (NBZ) stoichiometry was prepared using a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analyses indicate the formation of a single-phase perovskite-type orthorhombic structure. AC impedance plot is used as tool to analyse the electrical behaviour of the sample as a function of temperature at different frequency. The AC impedance studies revealed the presence of grain boundary effect and evidence of a negative temperature coefficient of resistance (NTCR) character. Pseudo Cole-Cole and complex electric modulus analyses indicated non-Debye-type dielectric relaxation. The AC conductivity obeys the universal power law. The pair approximation type correlated barrier hopping (CBH) model explains the universal behaviour of the s exponent. The apparent activation energy to the conduction process and minimum hopping distance are discussed.  相似文献   

15.
The transport properties of Nd-doped perovskite materials (La0.7−xNdx)Sr0.3Mn0.7Cr0.3O3 (x≤0.30) were investigated using impedance spectroscopy techniques over a wide range of temperatures and frequencies. AC conductance analyses indicate that the conduction mechanism is strongly dependent on temperature and frequency. The DC conductance plots can be described using the small polaron hopping (SPH) model, with an apparent reduction of the polaron activation energy below the Curie temperature TC. Complex impedance plots exhibit semicircular arcs described by an electrical equivalent circuit. Off-centered semicircular impedance plots show that the Nd-doped compounds obey to a non-Debye relaxation process. The conductivity of grains and grain-boundaries has been estimated. The activation energies calculated from the conductance and from time relaxation analyses are comparable. This indicates that the same type of charge carriers is responsible for both the electrical conduction and relaxation phenomena.  相似文献   

16.
刘鹏  贺颖  李俊  朱刚强  边小兵 《物理学报》2007,56(9):5489-5493
采用固相反应法制备了CaCu3Ti4-xNbxO12(x=0,0.01,0.04,0.08,0.2)陶瓷,样品在x取值范围内形成了连续固溶体.在40Hz—110MHz频率范围对样品进行了介电频谱分析,实验结果表明,与纯CaCu3Ti4O12不同,含Nb试样除了在频率大于10kHz范围内出现的德拜弛豫 关键词: 巨介电常数 德拜弛豫 阻挡层电容 等效电路  相似文献   

17.
This paper reports that the intergrowth ceramics Bi5TiNbWO15 (BW-BTN) have been prepared with the conventional solid-state reaction method. The dielectric and conductivity properties of samples were studied by using the dielectric relaxation and AC impedance spectroscopy in detail. Two distinct relaxation mechanisms were detected both in the plots of dielectric loss (tanδ) and the imaginary part (Z″) versus frequency in the frequency range of 10 Hz-13 MHz. We attribute the higher frequency relaxation process to the hopping process of the oxygen vacancies inside the grains, while the other seems to be associated with the space charges bound at the grain boundary layers. The AC impedance spectroscopy indicates that the conductivities at 625 K for bulk and grain boundary are about 1.12 × 10^-2 S/m and 1.43 × 10^-3 S/m respectively. The accumulation of the space charges in the grain boundary layers induces a space charge potential of 0.52 eV.  相似文献   

18.
The complex dielectric and AC conductivity response of BaBi2Nb2O9 relaxor ferroelectric ceramics were studied as a function of frequency (100 Hz-10 MHz) at various temperatures. The observed dielectric behavior was characterized by two types of relaxation processes which were described by the ‘universal relaxation law’. The frequency dependence of conductivity which showed a classical relaxor behavior followed the Jonscher's universal law σ(ω)=σ0+Aωn. The exponent n exhibited a minimum in the vicinity of temperatures of dielectric anomaly while the pre-factor A showed a maximum. The temperature dependence of n followed the Vogel-Fulcher relation with activation energy of about 0.14 eV.  相似文献   

19.
Complex impedance spectra were obtained on a crystal of CaCu3Ti4O12 (CCTO) from 289 to 456 K. As in the case of ceramic CCTO, these spectra can be interpreted as arising from a conducting material containing insulating barriers. This is then further evidence for the existence of planar defects within crystals of CCTO that act as insulating barriers and produce the large dielectric constant through a space charge mechanism.  相似文献   

20.
In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz–107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号