首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A family of phenoxo-bridged heterometallic Schiff base trinuclear complexes, [Fe2LnL2(C3H7COO)(H2O)]·CH3OH·CH3CN·H2O (Ln = Sm, 1; Gd, 2; Tb, 3; Dy, 4) is reported. Those complexes were afforded by “one-pot” reaction of a polydentate Schiff base ligand 2-hydroxy-3-methoxy-phenylsalicylaldimine (H2L) with Fe(NO3)3·9H2O, Ln(NO3)3·6H2O and sodium butyrate (C3H7COONa) in a mixture of methanol and acetonitrile in the presence of triethylamine as a base. Single-crystal X-ray diffraction analysis reveals that the structures of the four complexes are isomorphic. In each complex, two anionic [FeL2]? units coordinate to the central lanthanide ion as a tetradentate ligand using its four phenoxo oxygens, forming a two-blade propeller-like molecular shape. Magnetic properties of 1–4 were investigated using variable temperature magnetic susceptibility, and weak ferromagnetic exchange between the FeIII and LnIII ions has been established for the Gd derivative. The Tb and Dy complexes show no evidence of slow relaxation behavior above 2.0 K.  相似文献   

2.
The adsorption and/or decomposition pathway of Fe2(CO)9 or Fe3(CO)12 on hydrated or dehydrated NaY zeolites has been studied by an ESR technique. The adsorption resulted in the formation of three paramagnetic species withg iso=2.0450, 2.0378, and 2.0016, which were attributable to Fe3(CO)11 , Fe2(CO)8 , and Fe(CO)4 anion radicals, respectively. These radicals have been suggested as intermediates in the formation of HFe3(CO)11 on the hydrated NaY zeolite and Fe3(CO)12 on the dehydrated NaY zeolite.  相似文献   

3.
通过溶剂热法合成了2种三维微孔锌金属有机框架材料,其分子式为[Zn3(DBA)(OH)(1,10-phen)2]n (1)和{[Zn2(HDBA)(4,4′-bipy)1.5]·H2O}n (2)(H5DBA=3,5-二(2′,4′-对羧基苯基)苯甲酸;1,10-phen=1,10-菲咯啉;4,4′-bipy=4,4′-联吡啶)。结构分析表明,配合物1为三核锌基金属单元的三维微孔骨架,配合物2为双核锌基的微孔结构。与2相比,配合物1在水中具有较强的发光性能,可作为检测Fe3+、Cr2O72-和丙酮分子的发光传感器,具有较高的选择性和灵敏度。  相似文献   

4.
In this paper, a novel improvement in the catalytic Fenton reaction system named MHACF-NH2-MIL-101(Cr) was constructed based on H2 and Pd/NH2-MIL-101(Cr). The improved system would result in an accelerated reduction in FeIII, and provide a continuous and fast degradation efficiency of the 10 mg L-1 4-chlorophenol which was the model contaminant by using only trace level FeII. The activity of Pd/NH2-MIL-101(Cr) decreased from 100% to about 35% gradually during the six consecutive reaction cycles of 18 h. That could be attributed to the irreversible structural damage of NH2-MIL-101(Cr).  相似文献   

5.
ABSTRACT

Perimedine labelled rhodamine dye 1 has been designed and synthesised. Metal ion binding studies of 1 have been performed in CH3CN/H2O (3:1, v/v, 10 mM Tris-HCl buffer, pH = 6.90). Compound 1 senses multiple metal ions such as Al3+, Fe3+ and Fe2+ by exhibiting turn on fluorescence and colour change (colourless to pink) under different experimental conditions. Concentration variation distinguishes Al3+ from Fe3+ ion. At low concentration (c = 1 x 10?4 M), only Al3+ ion can exhibit turn on fluorescence with sharp colour change. Sensing of Fe2+ ion through turn on fluorescence and colour change has been possible via in situ oxidation by following Fenton’s reaction.  相似文献   

6.
A novel mixed-ligand [RuIII(amp)(pic)(H2O)] complex (1) (H2amp = N-(hydroxyphenyl)salicyldimine; pic = picolinate) has been synthesized and characterized by physico-chemical methods. Complex 1has been found to be an effective catalyst in oxo-functionalization of C-H bond of organic substrates by using tert-butyl hydroperoxide (t-BuOOH) as a terminal oxidant. Formation of a high valent Ru(V)-oxo species as catalytic intermediate is proposed to be the source of oxygen atom in the oxidised product.  相似文献   

7.
DTA and XRD studies of the Fe2V4O13–Cr2V4 O13 system have shown that continuous solid solutions of a Fe2–xCrxV4O13 type, bearing a Fe2 V4 O13 structure, are formed in the system. With the increasing degree of the Cr3+ ion incorporation into the Fe2 V4 O13 structure, a contraction of the solid solution crystal lattice develops. Solid solutions of a Fe2–x Crx V4 O13 type melt incongruently, their melting temperature increasing from 953 to 1003 K with increase in the degree of the Cr3+ ion incorporation. The solid product of melting Fe2–x Crx V4 O13 solid solutions for 0.2<x >1.2 is the Fe1–x Crx VO4 solution phase, and for x ≤0.2 and x ≥1.4 – the Fe1–x Crx VO4 phase as well as FeVO4 or CrVO4 , respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
合成了2,4-二(2-噻吩乙烯基)-6-(4'-N,N-二甲氨基苯乙烯基)-1,3,5-均三嗪(2)并鉴定了其结构。在乙腈-水混合介质中,化合物2在355和416nm处呈现双吸收峰,加入Cu2+,Hg2+ 和Fe3+ 后,均在520nm附近形成新的吸收峰。化合物2与Cu2+、Hg2+ 和Fe3+ 均形成1:1型配合物,其结合常数分别为1.9×105L·mol-1,6.6×103L·mol-1,2.7×103L·mol-1。对照化合物4与金属离子的光谱响应与化合物2相似,仅吸收峰的位置不同。因此,可认为化合物24中三嗪环中的N和噻吩环中的S与Cu2+、Hg2+ 和Fe3+ 共同配位形成了稳定的金属配合物。  相似文献   

9.
Phase equilibria up to the solidus line in the system Fe2O3?Fe8V10W16O85 were determined by means of X-ray phase powder diffraction and differential thermal analysis. This system is one of the intersections of the three-component system Fe2O3?V2O5?WO3. The studies revealed that this is not a real binary system, even in the solid state.  相似文献   

10.
Phase equlibria in the solid state in the system Fe2WO6?Fe8V10W16O85 were studied by means of X-ray phase powder diffraction and differential thermal analysis, This system is one of the intersections of the three-component system Fe2O3?V2O5?WO3. The investigation demonstrated that the system is not a real two-component system even below the solidus line.  相似文献   

11.
以有机碱四甲基氢氧化铵(TMAH)为沉淀剂合成了纳米Fe3O4和Co2+掺杂的纳米Fe3O4粒子。分别讨论了碱用量,铁盐溶液浓度,反应温度,有机碱及PEG-4000的分散性等因素对纳米Fe3O4的形貌影响。结果表明,所合成的纳米Fe3O4为30nm左右的反尖晶石型面心立方结构,有机碱除了起沉淀剂作用,还能够提高纳米Fe3O4的分散性。本文还讨论了不同Co2+掺入量的纳米Fe3O4粒子的磁性质,结果表明Co2+掺杂的纳米Fe3O4粒子的矫顽力在不同掺入量的下有较大的改变。当Co2+掺入量为10.0%时,纳米Fe3O4的矫顽力达到最大值,为1628Oe。  相似文献   

12.
Two dysprosium coordination compounds, (mnH)2[DyIII(Httha)]·3H2O (1) (H6ttha?=?triethylenetetramine-N,N,N′,N″,N′′′,N′′′-hexaacetic acid and mn?=?methylamine) and (enH2)3[DyIII(ttha)]2·9H2O (2) (en?=?ethylenediamine), were synthesized through direct heating and characterized by elemental analysis, FT-IR, thermal analysis, and single-crystal X-ray diffraction. X-ray diffraction analysis displays that 1 is a mononuclear nine-coordinate complex with a pseudo-monocapped square antiprismatic conformation (MCSAP) crystallizing in the monoclinic crystal system with P2(1)/c space group. The crystal data are as follows: a?=?16.1363(19)?Å, b?=?13.9336(11)?Å, c?=?13.6619(14)?Å, β?=?102.2490(10)°, and V?=?3001.8(5)?Å3. There are two kinds of methylamine cation in 1. They connect [DyIII(Httha)]2?and crystal waters through hydrogen bonds, leading to formation of a 2-D ladder-like layer structure. The polymeric 2 also is a nine-coordinate structure with a pseudo-MCSAP crystallizing in the monoclinic crystal system with P2/c space group. The cell dimensions are: a?=?17.7801(16)?Å, b?=?9.7035(10)?Å, c?=?22.096(2)?Å, β?=?118.874(2)°, and V?=?3338.3(6)?Å3. In 2 there are also two types of ethylenediamine cations. One connects three adjacent [DyIII(ttha)]3? complex anions through hydrogen bonds and the other is symmetrical forming hydrogen bonds with two neighboring [DyIII(ttha)]3? complex anions. These hydrogen bonds result in formation of a 2-D ladder-like layer structure as well.  相似文献   

13.
In this study, we used a simple and rapid colourimetric reaction for visual sensing of Fe2+ and Pb2+ ions in water by employing nano-MnO2 as a natural oxidase mimic to respectively catalyse ABTS and TMB in citrate-phosphate buffer solution (C-PBS) at 25°C and pH 3.8. It was found that nano-MnO2 possessed highly oxidase-mimicking activity with the Km values of 0.030 and 0.027 toward ABTS and TMB, respectively, indicating TMB had a stronger affinity on nano-MnO2 than ABTS. Interestingly, the presence of 0.01 mmol·L?1 Fe2+/Pb2+ ion was able to significantly down-regulate the activity of MnO2 nanozyme in nano-MnO2-mediated ABTS reaction processes (P < 0.01), which mainly due to the strong adsorption of metal ion toward nano-MnO2 surface via the electrostatic attractions, thus leading to the passivation and inactivation of MnO2 nanozyme catalytic activity. Thereinto, Fe2+ reacted with multivalent manganese by oxidation-reduction, while Pb2+ was specifically adsorbed onto the surface of MnO2 nanozyme and formed complexes. Notably, only Fe2+ ion inhibited the activity of MnO2 nanozyme-TMB with a detection limit as low as 1.0 μmol·L?1. In MnO2 nanozyme-ABTS sensing systems, Fe2+ and Pb2+ ions detection limit of 0.5 and 2.0 μmol·L?1 were, respectively, achieved with a linear response range of 0–0.02 and 0–0.8 mmol·L?1, implying the developed MnO2 nanozyme-ABTS sensor was potentially applicable for the visual determination of Fe2+ and Pb2+ ions in water. In the real water samples, MnO2 nanozyme-ABTS achieved high accuracy (relative errors: 3.4?10.5%) and recovery (96?110%) for respective detection of Fe2+ and Pb2+ ions. The simple and rapid MnO2 nanozyme-ABTS sensing systems might provide a practical assay for visual detection of Fe2+ and Pb2+ ions in the environmental water samples.  相似文献   

14.
Known analytical techniques are not applicable to the accurate and precise determination of AsV and total arsenic (Ast) in the mixtures of AsIII and AsF6. For this reason, an accurate and precise analytical procedure for determination of the content of AsV and Ast in the range of 5-10 mg of As with a relative standard deviation (R.S.D.) smaller than 0.4% was developed. The results were proved by the determination of AsIII by titration with KBrO3 and gravimetric determination of AsF6 species.  相似文献   

15.
Using DTA and X-ray phase diffraction methods, a diagram of phase equilibria established in two sections of a tricomponent oxide triangle Fe2O3-V2O5-WO3was constructed, that is, in the sections: Fe8V10W16O85-Fe2O3and Fe8V10W16O85-Fe2WO6. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

17.
Two rare-earth metal coordination compounds, (NH4)4[SmIII2(Httha)2]·16H2O (1) (H6ttha?=?triethylenetetramine-N,N,N,N′′,N′′′,N′′′-hexaacetic acid) and (NH4)4[SmIII2(dtpa)2]·10H2O (2) (H5dtpa?=?diethylenetriamine-N,N,N,N′′,N′′-pentaacetic acid), have been synthesized through reflux and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction techniques. SmIII of (NH4)4[SmIII2(Httha)2]·16H2O (1) is nine-coordinate, forming tricapped trigonal prismatic coordination with three amine nitrogens and six oxygens, in which four oxygens are from one ttha and two from the other ttha. (NH4)4[SmIII2(Httha)2]·16H2O (1) crystallizes in the monoclinic crystal system with P2(1)/c space group. The crystal data are: a?=?13.9340(13) Å, b?=?22.890(3) Å, c?=?20.708(2) (14) Å, β?=?99.521(2)°, and V?=?6513.7(13) Å3. There are two –NH+– groups in the [SmIII2(Httha)2]4?. The polymeric (NH4)4[SmIII2(dtpa)2]·10H2O (2) also is nine-coordinate with tricapped trigonal prismatic conformation and crystallizes in the triclinic crystal system with P–1 space group. The cell dimensions are: a?=?9.8240(8) Å, b?=?10.0329(9) Å, c?=?13.0941(11) Å, β?=?77.1640(10)°, and V?=?1227.30(18) Å3. In (NH4)4[SmIII2(dtpa)2]·10H2O, there are two types of ammonium cations, which connect [SmIII2(dtpa)2]4? and lattice water through hydrogen bonds, leading to a 2-D ladder-like layer structure.  相似文献   

18.
The low electronegativity of an oxidation state in an anion enables high oxidation states, e.g. NiIV, and AgIII, to be easily attained in liquid anhydrous HF (aHF), made basic with fluoride-ion donors. The oxidation state can be enhanced if elemental fluorine is photo-dissociated. Teflon® valves and lines, especially transparent and kinetically stable fluorocarbon containers for the aHF solutions, provide for this. Binary fluorides that are of low solubility in aHF, can be displaced by stronger F acceptors from their high oxidation-state anions. NiF4, NiF3, and AgF3, which can be made in this manner, are thermodynamically unstable with respect to loss of fluorine. The electronegativity of the oxidation state in the binary fluoride is higher than in the anion (hence the metastability) and when a strong F acceptor converts the binary fluoride into a cationic species, the electronegativity is further enhanced. Thus cationic AgIII and NiIV are superior to KrF+, as one-electron oxidizers and are the most potent oxidizers known thus far. They are able to remove the electron from all platinum-metal hexafluoro-anions, MF6, to liberate the hexafluorides. All of this chemistry can be achieved at or below room temperature.  相似文献   

19.
利用水热法合成了Fe3+掺杂的三维分级纳米Bi2WO6,借助X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、透射电镜(HRTEM)、能谱(EDS)、紫外可见漫反射(UV-Vis-DRS)等测试手段对所得样品的相组成、形貌和谱学特征进行了表征。选择罗丹明B为模型污染物研究所得样品在可见光下的催化活性。结果表明,Fe3+掺杂Bi2WO6为新颖的分级纳米结构,且Fe3+掺杂能有效提高Bi2WO6的光催化活性,Fe3+掺杂量对Bi2WO6活性的影响显著;实验结果还表明,所得Fe3+掺杂Bi2WO6催化剂的稳定性较好,易于回收。此外,还对Fe3+掺杂Bi2WO6的光催化活性增强机理进行了研究,缺电子的Fe3+作为电子捕获中心有利于促进光生电子-空穴对的分离,从而提高Bi2WO6的光催化活性。  相似文献   

20.
《Analytical letters》2012,45(14):2664-2672
Abstract

Direct electrochemistry of the myoglobin‐triacetone triperoxide (Mb‐TATP) composite on carbon paste (CP) electrode is reported. This electrode gives a well‐defined and quasi‐reversible cyclic voltammogram for the Mb FeIII/FeII redox coupled with the formal potential (E?′) of ?0.302 V (vs. Ag/AgCl) in pH 6.92 phosphate buffer. Electronic and vibrational spectroscopies show that the Mb in the composite retains a structure similar to its native form. The enzymatic reactivity to the reduction of H2O2 has been studied for the Mb‐TATP film. The analytical performances have been obtained with the linear range of 78.32–1135.64 µM, the detection limit of 55 µM (S/N=3), and the apparent Michaelis‐Menten constant (K m) of 662.8 µM. This H2O2 biosensor based on the electrocatalysis of the immobilized Mb presents a higher stability within two weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号