首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CE is gaining great popularity as a well‐established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off‐line preconcentration (sample preparation) and on‐line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid–liquid microextraction, supercritical fluid extraction, matrix solid‐phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on‐line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.  相似文献   

2.
The use of transient moving chemical reaction boundary (tMCRB) was investigated for the on‐line preconcentration of native amino acids in heart‐cutting 2D‐CE with multiple detection points using contactless conductivity detection. The tMCRB focusing was obtained by using ammonium formate (pH 8.56) as sample matrix and acetic acid (pH 2.3) as a BGE in the first dimension of the heart‐cutting 2D‐CE. Different experimental parameters such as the injected volume and the concentration in ammonium formate were optimized for improving the sensitivity of detection. A stacked fraction from the first dimension was selected, isolated in the capillary, and then separated in the second dimension in the presence of a chiral selector ((+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid). This on‐line tMCRB preconcentration coupled with heart‐cutting 2D‐CE was applied with success to the chiral separation of D ,L ‐phenylalanine, and D ,L ‐threonine in a mixture of 22 native amino acids. The sample mixture was diluted in 0.8 M of ammonium formate, and injected at a concentration of 2.5 μM for each enantiomer with a volume corresponding to 10% of the total capillary volume. An LOD (S/N=3) of 2 μM was determined for L ‐threonine.  相似文献   

3.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

4.
《Electrophoresis》2018,39(14):1771-1776
An ionic liquid‐based headspace in‐tube liquid‐phase microextraction (IL‐HS‐ITLPME) in‐line coupled with CE is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. In the newly developed method, simply by placing a capillary injected with ionic liquids (IL) in the HS above the aqueous sample, volatile phenols were extracted into the IL acceptor phase in the capillary. After extraction, electrophoresis of the phenols in the capillary was carried out. Extraction parameters such as the extraction time, extraction temperature, ionic strength, volume of the sample solution, and IL types were systematically investigated. Under the optimized conditions, enrichment factors for four phenols were from 1510 to 1985. The proposed method provided a good linearity, low limits of detection (below 5.0 ng/mL), and good repeatability of the extractions (RSDs below 6.7%, n = 6). This method was then utilized to analyze two real environmental samples of Xiaoxi Lake and tap water, obtaining acceptable recoveries and precisions. Compared with the usual HS‐ITLPME for CE, IL‐HS‐ITLPME‐CE is a simple, low cost, fast, and environmentally friendly preconcentration technique.  相似文献   

5.
This paper describes the combined use of carbon nanotubes and an ionic liquid directly coupled in‐line to commercial CE equipment for sample treatment. The extraction unit operates as a spin column to preconcentrate the analytes. The extraction unit is inserted into the sample vial. The elution is performed in‐line, placing the vial on the carrousel of the CE equipment. The joint use of carbon nanotubes and ionic liquids as sorbent is based on the high adsorption capacity of these materials, which makes them highly suitable for microextraction purposes. The LOQ of analytes were within the range of 0.65–0.83 μg/L with a RSD of less than 7%. The values of recovery range between 90 and 112%. The absolute recovery obtained from samples containing 1 μg/L of analytes was 38%.  相似文献   

6.
Single drop microextraction (SDME) is a convenient and powerful preconcentration method for CE before injection. By simple combination of sample‐handling sequences without modification of the CE apparatus, a drop of an aqueous acceptor phase covered with a thin organic layer was formed at the tip of a capillary; 10 min SDME of fluorescein and 6‐carboxyfluorescein from a donor phase of pH 1 to an acceptor phase of pH 9 provided 110‐fold enrichments without stirring the donor phase. To improve the concentration effect further, SDME was coupled with an on‐line (after injection) sample preconcentration method, sweeping, in which analytes in a long sample zone are accumulated at the boundary of a pseudostationary phase penetrating into the sample zone. It is thus necessary to inject a sample of much larger volume than that of a drop in typical SDME. A Teflon sleeve over the capillary inlet allowed a large volume drop to be held stably during extraction. By in‐line coupling 10 min SDME and sweeping of a 30 nL sample using a cationic surfactant dodecyltrimethylammonium, enrichment factors of the double preconcentration were increased up to 32 000.  相似文献   

7.
In this study, the suitability of solid‐phase extraction (SPE) coupled in‐line to CE with UV–Vis detection was evaluated for the preconcentration and separation of diluted solutions of five pharmaceuticals compounds: benzafibrate, piroxicam, diclofenac sodium, naproxen and clofibric acid. An SPE analyte concentrator containing Oasis® HLB sorbent was constructed without frits and placed near the inlet end of the separation capillary. Different parameters such as sample pH, composition and volume of the elution plug and sample loading time were studied in order to obtain the maximum preconcentration factors. The LODs reached for standard samples were in the range 0.06–0.5 ng/mL with good reproducibility, and the developed strategy provides sensitivity enhancement factors around 14 000‐fold in peak area and 5900‐fold in peak height compared with the normal hydrodynamic injection. Finally, river water samples fortified with the pharmaceutical compounds were analyzed by the developed in‐line SPE‐CE‐UV method in order to show the potential of the methodology for the analysis of environmental aquatic samples. For these samples, high values of relative recoveries, between 73–107% and 79–103% for two concentration levels, 5 and 25 ng/mL, respectively, were obtained and LODs ranged between 0.19 and 1 ng/mL.  相似文献   

8.
Several strategies, namely, large volume sample stacking (LVSS), field‐amplified sample injection (FASI), sweeping, and in‐line SPE‐CE, were investigated for the simultaneous separation and preconcentration of a group of parabens. A BGE consisting of 20 mM sodium dihydrogenphosphate (pH 2.28) and 150 mM SDS with 15% ACN was used for the separation and preconcentration of the compounds by sweeping, and a BGE consisting of 30 mM sodium borate (pH 9.5) was used for the separation and preconcentration of the compounds by LVSS, FASI, and in‐line SPE‐CE. Several factors affecting the preconcentration process were investigated in order to obtain the maximum enhancement of sensitivity. The LODs obtained for parabens were in the range of 18–27, 3–4, 2, and 0.01–0.02 ng/mL, and the sensitivity evaluated in terms of LODs was improved up to 29‐, 77‐, 120‐, and 18 400‐fold for sweeping, LVSS, FASI, and in‐line SPE‐CE, respectively. These preconcentration techniques showed potential as good strategies for focusing parabens. The four methods were validated with standard samples to show the potential of these techniques for future applications in real samples, such as biological and environmental samples.  相似文献   

9.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

10.
A rapid micro‐analytical multiresidue method was developed for analysis of pyrethroids (kadethrin K, cypermethrin C and permethrin P) in soil micro‐sample (200 mg). It uses on‐line flow‐through extraction of soil micro‐samples (packed into a short glass column) with a methanol‐aqueous citric acid buffer mixture, successive on‐line SPE preconcentration of analytes from the extract and on‐line RP‐HPLC analysis with UV photometric detection. The separation of pyrethroids is performed on a Purospher RP‐18e column with methanol/water as mobile phase. Effects of sorbent placed at the bottom of a short column holding the soil sample and different kinds of on‐line SPE columns were tested. Besides, the influence of volume of the effluent on the pyrethroids recovery was also studied. Calibration curves were linear over the range assayed from 0.01 to 0.2 μg/mL with correlation coefficients of linear regression (least‐squares method) in the range 0.998–0.999. Recovery studies were carried out at 0.25–1.00 μg/g dry soil fortification level and obtained recoveries were for K 81–84%, C 56–59% and for P 58–63%. Achieved LOD (confidence band) of studied pyrethroids were for large‐volume injection (1 mL) 4.5 ng K, 3.7 ng C, 3.6 ng P or 27 ng/g K, 32 ng/g C and 29 ng/g P in dry soil “solid sampling HPLC”.  相似文献   

11.
Reaching trace amounts of mycotoxin contamination requires sensitive and selective analytical tools for their determination. Improving the selectivity of sample pretreatment steps covering new and modern extraction techniques is one way to achieve it. Molecularly imprinted polymers as selective sorbent for extraction undoubtedly meet these criteria. The presented work is focused on the hyphenation of on‐line molecularly imprinted solid‐phase extraction with a chromatography system using a column‐switching approach. Making a critical comparison with a simultaneously developed off‐line extraction procedure, evaluation of pros and cons of each method, and determining the reliability of both methods on a real sample analysis were carried out. Both high‐performance liquid chromatography methods, using off‐line extraction on molecularly imprinted polymer and an on‐line column‐switching approach, were validated, and the validation results were compared against each other. Although automation leads to significant time savings, fewer human errors, and required no handling of toxic solvents, it reached worse detection limits (15 versus 6 μg/L), worse recovery values (68.3–123.5 versus 81.2–109.9%), and worse efficiency throughout the entire clean‐up process in comparison with the off‐line extraction method. The difficulties encountered, the compromises made during the optimization of on‐line coupling and their critical evaluation are presented in detail.  相似文献   

12.
Automated coupling of headspace‐single drop microextraction (HS‐SDME) and CE has been demonstrated using a commercial CE instrument. When a drop hanging at the inlet tip of a capillary for CE is used as the acceptor phase, HS‐SDME becomes a simple but powerful sample pretreatment technique for CE before injection to facilitate sample cleanup and enrichment. By combining HS‐SDME with an on‐line sample preconcentration technique, large volume sample stacking using an electroosmotic flow pump, the sensitivity can be improved further. The overall enrichment factors for phenolic compounds were from 1900 to 3400. HS‐SDME large volume sample stacking using an electroosmotic flow pump was successfully applied to a red wine sample to obtain an LOD of 4 nM (0.8 ppb) for 2,4,6‐trichlorophenol which is a precursor for 2,4,6‐trichloroanisole causing the foul odor in wine called cork taint.  相似文献   

13.
In this study, in‐line solid‐phase extraction (SPE) was used as an enrichment technique in combination with CE for the preconcentration and separation of 2‐ethylidene‐1,5‐dimethyl‐3,3‐diphenylpyrrolidine (EDDP), cocaine (COC), codeine (COD) and 6‐acetylmorphine (6AM). The separation buffer (BGE) used was 80 mM disodium phosphate anhydrous and 6 mM of HCl (final BGE pH of 3). The SPE extractor consists of a small segment of capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoretic capillary. Different parameters affecting preconcentration were evaluated, such as sample pH, the volume of the elution plug and sample injection time. The detection limits (LODs) reached for standard samples by in‐line SPE‐CE‐UV ranged between 50 and 200 ng/L, with sensitivity enhancement factors ranging from 2300 to 5300. Reproducibility values (expressed in terms of relative standard deviation) were below 7.6% for standard samples. This is a simple and an effective method for the determination of the studied drugs of abuse and their metabolites. The applicability of the developed method was demonstrated in tap and river water samples which were directly analyzed without any off‐line pretreatment. Analytical parameters were evaluated and LODs were between 70 and 270 ng/L with relative recoveries between 85 and 97%.  相似文献   

14.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

15.
Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE‐C4D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field‐enhanced sample injection, coupled with CE‐C4D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01–0.1 μM (1.7–11.1 μg/L) and sensitivity enhancements of 48‐ to 53‐fold were achieved with the large volume sample stacking‐CE‐C4D method. By performing the field‐enhanced sample injection‐CE‐C4D procedure, excellent LODs down to 0.0005–0.02 μM (0.1–2.2 μg/L) as well as sensitivity enhancements of up to 245‐ to 1002‐fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.  相似文献   

16.
This work presents a strategy based on the in‐line coupling of SPE and CE for the chiral determination of cathinones (R,S‐mephedrone, R,S‐4‐methylephedrine, and R,S‐ methylenedioxypyrovalerone) in urine samples, using a sample pretreatment based on liquid‐liquid extraction. The chiral separation of the compounds is achieved by adding a mixture of 8 mM 2‐hydroxypropil β‐CD and 5 mM β‐CD to the BGE, which consists of 70 mM of monosodium phosphate aqueous solution at pH 2.5. Oasis HLB was the selected sorbent for the in‐line SPE device, and to reduce analysis time and LODs, several parameters affecting the in‐line SPE system were evaluated, such as pressure and time of sample injection and dimensions of the SPE device. The highest preconcentration factors were achieved by using 3 bar of injection pressure for 20 min with an in‐line SPE device of 2 mm length and 150 µm of i.d. The developed method was applied to determine the presence of the compounds in spiked urine samples. The LODs obtained were between 3 and 8 ng/mL, and these levels were below the usual concentrations at which these drugs are present in urine from cathinone abusers. Thus, the optimized method has the potential to be applied for toxicological and forensic purposes.  相似文献   

17.
A flow injection flame atomic absorption spectrometry system incorporating a microcolumn of rice bran was designed, and its capability for on‐line trace enrichment of copper, cadmium and lead was studied. Analytes were deposited on the microcolumn by processing a standard or solution of analytes on the column. Injection of 250 μL of nitric acid (1 mol/L) then served to elute the retained species to FAAS. The procedure was successfully applied for determination of copper in tap water, well water and multivitamin tablets. The accuracy was assessed through recovery experiments and independent analysis by furnace‐AAS. A sample volume of 20 mL of copper resulted in a preconcentration factor of 96; precision value at the 20 μg/L was 4.1%.  相似文献   

18.
An analytical method, based on a column coupling capillary ITP and CZE in a hydrodynamically closed separation mode hyphenated with the detection in the modular arrangement, was developed in this work. Analytical possibilities of this approach are demonstrated on the direct and ultrasensitive quantitative determination of quinine (QUI) in diluted real multicomponent ionic matrices (beverages, urine). The detection cell interface, with the rectangular arrangement of the optical channels inside, connected the separation capillary with the LIF detector via optical fibers in the on‐column detection arrangement. ITP enabled the direct large volume (30 μL) injections of the diluted real matrices with an on‐line sample pretreatment (preseparation, preconcentration) so that no external sample preparation (except for the dilution) was necessary for the separation of the analyte in the multicomponent ionic matrices. Due to the ITP sample preconcentration and intrinsic sensitivity of the LIF detection, very low concentration LOD (as low as 77 pg/mL), were reached at the same time. This was ca. two orders lower than the corresponding LOD achieved by the same 2D separation system with UV absorbance detection. Compared to the single column CE‐LIF methods applied for this model analyte and matrix, this method was found to be superior in terms of concentration LOD, with acceptable selectivity and benefits of the on‐line sample preparation. A food control and bioanalytical application clearly illustrates great practical possibilities and routine use of the proposed modular ITP–CZE–LIF technique.  相似文献   

19.
黄林芳  何蔓  陈贝贝  胡斌 《色谱》2014,32(10):1066-1078
毛细管电泳(CE)具有分析速度快、分离效率高、样品消耗少、成本低廉等优点,已被应用于无机离子、有机小分子、蛋白质、核酸及细胞等的分析中。CE中最常用的检测方式是紫外检测(UV),但由于常规进样样品体积小、检测光程短,CE-UV的灵敏度往往不能满足复杂样品中痕量物质直接分析的要求。CE中的在柱富集技术包括堆积、动态pH界面、吹扫和瞬间等速电泳等,可在很大程度上提高CE-UV的检测灵敏度;另外,固相和液相微萃取技术及其与在柱富集技术相结合应用在CE中也能净化样品基质,进一步提高富集倍数,改善分析灵敏度,从而拓宽了CE-UV在复杂样品分析中的应用范围。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号